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Two Dimensional Modeling

We will study how to model aicraft in two dimensions.

I do this because two-dimensional modeling is technically a lot

easier than three-dimensional modeling, while at the same time

most of the technical and theoretical problems are already present.

As a consequence, two-dimensional modeling is a good preparation

for three-dimensional modeling.
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What can be obtained by two-dimensional modeling

Surprisingly much can be modeled in two dimensions:

• Performance analysis: Maximum speed, maximum altitude,

maximum take off weight, maximum rate of climb, how much

runway is needed for takeoff, how much is needed for landing,

how far can the plane glide without engines. How much fuel

does it need.

• Stability analysis: How does the plane react to small

disturbances in altitude, attitude or speed? How hard is it for

the pilot to maintain a certain speed and altitude?

What happens when cargo is not properly loaded. How well

does an automatic speed and/or altitude control system work?

How to design one that works well?

• Even some stunts can be analyzed: Loopings and zero-gravity

flights.
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Airfoils/Wings

Before we can do any modeling, we need to study some of the basic

properties of airfoils.

All passive objects have resistance in an air flow. This fact is rather

intuitive.

In addition most objects also have a force that is perpendicular to

the air flow. This force is called lift.

Forms that are designed to optimize the ratio Lift/Drag are called

air foils.
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Distinction Lift/Drag

The decomposition into lift and drag is not an arbitrary

decomposition into independent axes.

In potential flow theory, lift and drag have fundamentally different

causes.

In this theory, drag is caused by removal of air from the stream.

(being a sink).

Lift is caused by circulation that is present in the stream.

The circulation theory is able to explain lift pretty well.

Unfortunately, potential flow theory does not work well for drag,

because it predicts that passive objects have no drag. This is

obviously different from observation.
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Simple Observations

We see from the graph that lift depends on angle of attack.

Lift increases (linearly) with angle of attack until a maximum value

is reached. After that, the lift decreases.

The decreasement of lift at high angles of attack is called stalling.

It is a complicated phenomenon.

It is (somewhat) non-deterministic, and it has a memory.

A wing may be stalled at some places, and laminar at other places.
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Aspect Ratio

The span of a wing is its sidewards length. The chord length is its

length in flying direction.

The aspect ratio of a wing is defined as span squared divided by

surface area. (span divided by average chord length.)

As a general rule, planes that are designed to fly slow have high

aspect ratios, while planes that are designed to fly fast have low

aspect ratios.

A wing with low aspect ratio is technically easier to construct, but

wings with low aspect ratio loose lift at the tips. This effect is

smaller when the plane flies faster.
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Basic Formulas

Let S be the surface area of the wing segment that we are

considering.

Dynamic pressure q is defined as q = 1
2ρV

2. Here ρ is the air

density, (which is 1.225 kg.m−3 at sea level, and 0.414kg.m−3 at 10

km altitude.)

Density varies with temperature, with weather, and with altitude.

Intuitively, the dynamic pressure is the pressure that is needed to

stop the movement of the air.

We have

L = q.S.CL(α)

D = q.S.CD(α)
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Center of Pressure

The totality of aerodynamic forces on a wing can be summed into a

single force working on a single acting point.

This acting point is called the center of pressure.

Its position is important for stability. A forward center of pressure

will cause the plane to pitch up. A backward center of pressure will

cause the plane to pitch down.

The center of pressure moves with angle of attack. It usually moves

forward when angle of attack increases. Since this causes a pitch up

moment, wings are usually unstable.
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Pitching Moment

Instead of specifying center of pressure, one can also specify

pitching moment.

Assume some fixed point p on the wing. Let x be the current

position of the center of pressure.

The pitching moment M around p is defined as M = (p− x)× F,

where F is the total aerodynamic force (lift and drag) on the wing.

Pitching moment is positive if it tries to obtain a pitch up (increase

in angle of attack).

Pitching moment is usually modeled by the formula

M = q.c.S.CM (α),

where c is the chord length.
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Aerodynamic Center

Theoretical models predict that if one takes p = 1
4c, then CM (α)

does not depend on α.

In practice, this works only for a limited range of α, and the

constant point often lies not exactly at 1
4 .

Anyway, the point p, for which CM (α) is constant, or almost

constant, or sometimes constant, is called the aerodynamic center

of the wing.

(For NACA 0009, the aerodynamic center behaves pretty well

between α = −10◦ and α = 10◦)

If CM (α) is listed, it is usually based on p = 1
4 .

Sometimes, another point close to 1
4 is chosen.
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Table Data

The coefficient functions CL(α) and CD(α) have to be put in tables

and interpolated.

For the pitching moment, one can either make a table of CX(α)

(relative position of center of pressure), or of CM (α) (the pitching

moment).

I think that CM (α) is better, because CX(α) is not well-defined

when the lift is low. CX(α) tends to take crazy values at low lift,

which makes interpolation difficult.
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Relating Moment Coefficient to Center of Pressure

Let P be the reference point, let X(α) be the position of center of

pressure for α, let M(α) be the pitching moment for α.

( P −X(α) )(L. cosα+D. sinα) = M(α).

Let p be the position of P, expressed as fraction of chord length.

Using the formulas on the previous slides, we get

( p−CX(α) ) c ( q.S.CL(α). cosα+q.S.CD(α). sinα ) = q.c.S.CM (α).
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Dividing by q.S.c results in

( p− CX(α) )( CL(α) cosα+ CD(α) sinα ) = CM (α).

This expression can be used to compute CM (α). If one knows

CM (α), and needs to compute CX(α), one can use

CX(α) = p−
CM (α)

CL(α). cosα+ CD(α). sinα
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Performance: Gliding as Far as Possible

Suppose one is quietly flying, and the engines break. How does one

get as far as possible?

Let ϑ be the gliding angle. Let W be the weight of the plane. We

will try to minimize ϑ.

If we are gliding at angle ϑ, then L = q.S.CL(α) = W. cosϑ, and

D = q.S.CD(α) = W. sinϑ. It follows that

q.S.CD(α)

q.S.CL(α)
=

CD(α)

CL(α)
=

W. sinϑ

W. cosϑ
= tanϑ.

The minimal value of tanϑ is obtained when CD(α)
CL(α) is minimal.

Note that this calculation does not take the fuselage into account.

In order to get correct numbers, one needs CL(α), CD(α) for the

complete aircraft.
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Performance: Flying as Efficiently as Possible

Since energy is force times distance (dotproduct), it follows that

power is force times speed.

We assume that we are flying at fixed altitude, in equilibrium. It

follows that

W =
1

2
ρ.V 2.S.CL(α).

Solving V results in

V =

√

2W

ρ.S.CL(α)

Since all force that contributes to the power used originates from

drag, it follows that the required power equals D.V =

1

2
ρ.V 2.S.CD(α).V =

1

2
ρ.S.CD(α).

√

8.W 3

ρ3.S3.C3
L(α)
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This term can be simplified into

CD(α).

√

2.W 3

ρ.S.C3
L(α)

Since W, ρ, S are constant, we need to find the value of α for which

CD(α)
√

C3
L(α)

is minimal.

One must be a bit careful interpreting this formula. It applies when

one wants to fly as long as possible (distance does not matter), and

it assumes that power consumption of the engine equals D.V. This

does not apply to all (most) engines.

If one wants to fly a given distance, as effectively as possible,

minimize D. The principles are sound.
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Modeling the Complete Airplane

We want to model the complete airplaine (in two dimensions).

Before we can do that, we need mechanics for rigid objects in two

dimensions.
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Mass Distribution

We assume that the rigid object is built-up from masses

m1, . . . ,mn, which are at positions x1, . . . , xn.

The total mass is defined as M =

n
∑

i=1

mi.

The mass center (also center of gravity) is defined as

C =
1

M

n
∑

i=1

mixi.

The average speed is defined as

V =
1

M

n
∑

i=1

mivi.
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The moment of inertia/inertial moment relative to a point p is

defined as

Ip =
n
∑

i=1

mi ‖x− p‖2 =
n
∑

i=1

mi ( (xx − px)
2 + (xy − py)

2 ).
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Mass Distribution (Continuous)

Assume a function M(x) that represents mass density at position x.

Total mass equals

M =

∫

x∈R2

M(x).dx.

The mass center (also center of gravity) is defined as

C =
1

M

∫

x∈R2

M(x).x.dx.

The moment of inertia/inertial moment relative to a point p is

defined as

Ip =

∫

x∈R2

M(x).‖x− p‖2.dx.
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Rigid Objects

If everything goes well, the airplane remains a rigid object. A rigid

object is an object whose point masses preserve their relative

positions.

Definition: A speed function is a function that maps space to

speed. A speed function is rigid if it can be written in the form

V (x) = V 0 + ω × x.

Speed functions can also be used in 3D-space. Since we are

considering only 2D here, angular velocity will be represented by a

single number ω, and ω × x can be written as (−ω.x2, ω.x1).

The speed V 0 does not represent the speed of the object! It is the

speed assigned to the object at position (0, 0), but the object itself

may be somewhere else.
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Movement of Rigid Object under Force

We assume a sequence of forces F 1, . . . , F k, acting at positions

y1, . . . , yk, working on the rigid object.

The total force is defined as

F =
k
∑

i=1

F i.

Given a reference point p, the total torque around p is defined as

T p =
k
∑

i=1

((yi − p)× F i).

Because F i, p and yi are two-dimensional vectors, the torque can

be considered a single number.
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Theorem: Assume a rigid object, whose masses m1, . . . ,mn are at

positions x1, . . . , xn. Assume that C = 0 for this rigid object.

Assume that the movement of the object is characterized by the

rigid speed function V (x) = V 0 + ω × x.

Let V be the average speed of the rigid object. Then V = V 0.

proof:

V =
1

M

n
∑

i=1

mivi =
1

M

n
∑

i=1

mi(V 0 + ω × xi) =

1

M

n
∑

i=1

miV 0 +
1

M

n
∑

i=1

mi(ω × xi) =

V 0 + ω ×
1

M
(

n
∑

i=1

mixi ) = V 0.

(Choose a coordinate system with origin in C)
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Theorem: Assume a rigid object, whose masses m1, . . . ,mn are at

positions x1, . . . , xn. Assume that C = 0. Assume that movement of

the object is characterized by the rigid speed function

V (x) = V + ω× x. Assume that the total force on the object equals

F . Assume that the total torque around the mass center equals T
C
.

Then






T0 = I0.ω
′

F = M (V
′
+ ω × V ).

The second equation is obtained from the familiar F = MV
′
. The

term ω × V corrects acceleration for the fact that, when the object

is moving and rotating at the same time, this causes a change in

speed at the origin, which does not correspond to actual

acceleration of the object.

25

























ω′ =
T0

I0

V
′
=

F

M
− ω × V

(1)

If one writes out the components, one gets:


























ω′ =
T0

I0

V
′

1 =
F 1

M
+ ω.V 2

V
′

2 =
F 2

M
− ω.V 1

(2)

Either equation can be used to find ω′ and V
′
if we know T0 and F .
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Before Equation 1 can be used, a coordinate system must be fixed.

There are many ways to do this:

1. In Local Right Up (LRU) coordinates, the origin is fixed at a

point on the ground. It is assumed that the earth is flat,

infinite and two dimensional. The X-axis points horizontal to

the right, and the Y-axis points up.

2. In body coordinates, the origin is at the mass center of the

airplane. The X-axis points forward along the fuselage of the

plane (the direction is usually well-defined). The Y-axis points

up and is obtained by rotating the X-axis over 90◦ to the left.
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Flight Model in LRU coordinates

At a given time point, the state of the airplane is determined by a

position vector x, a speed vector v, a pitch angle ϑ, and an angular

velocity ω.

In addition, the various components of the airplane may have state

parameters, which may be important for stability analysis.

If the plane has an autopilot, it may have some internal state as

well, which is important for stability analysis.

We need expressions for F and T0. Using those, we can get a

differential equation for the complete airplane.
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Aircraft model in LRU Coordinates

Gravity:

FG = (0,−M.g).

Gravity does not create torque around center of mass.

Gravity is a very well-behaved, easy to model force with only one

disadvantage: It always points downwards.
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Engines

It is assumed that the engines produce a force in forward direction:

F thr = (cosϑ, sinϑ)Fthr.

Determining Fthr is complicated. Fthr depends on the type of

engine, on throttle selected by the pilot, on altitude and speed, and

possibly on angle of attack. Engine data are usually not public.

In addition to force, engines produce a torque:

T thr = −Fthr.en2

en2 is the relative Y-position of the engines, which is negative if the

engines are below the wing, and probably positive if the plane has

high wings.

I assume that engine force is aligned with the body X-axis. If not,

a correction term is needed.
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Main Wings

The main wings are usually connected to the air frame under a

positive angle ϑw.

The angle of attack of the wings equals

α = ϑw + ϑ+ arctan(−v2, v1).

The lift- and drag- and moment coefficients equal

CL(α), CD(α), CM (α).

Fw =
1

2
ρ‖v‖2S( CL(α).

(−v2, v1)

‖v‖
− CD(α).

v

‖v‖
) =

1

2
ρS‖v‖( CL(α)(−v2, v1)− CD(α)v ).
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In order to determine the torque resulting from the main wing, we

need to know the point w, on which it is fixed to the air frame. For

simplicity, we take w as the point that was used in defining CM (α).

Then torque around w equals

Mw =
1

2
ρS c ‖v‖2CM (α).

Torque around the mass center can be obtained from

Tw = Mw + w × Fw.
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Elevators

The elevators are little wings which are situated at relative position

(e1, e2). Almost certainly, e1 < 0, and e2 > 0.

The elevators are mounted to the air frame under an angle of

attack αe. This angle of attack usually can be adjusted by the

pilot. This adjustment is called trimming. In addition, the

elevators have flaps which change the profile. The flaps are

connected to the controls of the pilot.
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Because the elevators are at some distance from the mass center,

the speed of the elevators w depends on v and ω as follows:

w = v + ω ×





cosϑ − sinϑ

sinϑ cosϑ



 (e1, e2) =







v1 − ω(e1 sinϑ+ e2 cosϑ)

v2 + ω(e1 cosϑ− e2 sinϑ).

(If ϑ and e2 are small, we can use w1 ≈ v1, and w2 ≈ v2 + ω.e1.

The angle of attack of the elevators equals

α = ϑe + ϑ+ arctan(−w2, w1).
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Once α and w, are known, the same expression as for the main

wings can be be used:

F e =
1

2
ρS‖w‖( CL(α)(−w2, w1)− CD(α)w ).

Torque around e (connection point of elevators) equals

Me =
1

2
ρS c ‖w‖2CM (α).

Torque around mass center can be obtained from

Te = Me + e× F e.
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Fuselage

Modeling fuselage is difficult: The fuselage causes drag and lift.

Lift has a center of pressure. The pressure center is probably in

front of the mass center. As a consequence, the fuselage contributes

to pitch instability. (This effect also exists in the dimension that we

are currently ignoring.)

Since the fuselage is much thicker than an airfoil, we need to know

the pressure center for drag. It is safe to assume that it is in the

middle at 0 angle of attack, but I have no idea, where it is at other

angles of attack. Its position may be important for pitch stability.

For wings, one can find some data in books or on the internet. I

found nothing useful yet for the fuselage.
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Wheels

If the wheels touch the ground, they create force, which one may

wish to model.

If they are not on the ground (and not retracted), the wheels may

create resistance, which has to be modelled.

I think that this is easy:
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Implementing Equation 1 with Euler Method

Let h be the step size. Compute


































ωt+h = ωt + h
T0

I0

V t+h = V t + h(
F

M
− ωt × V t)

ϑt+h = ϑt + h.ωt

Xt+h = Xt + h.V t

It may seem that this is all, but it is not. The problem is that V

has changed its meaning: At time t, V t denoted the speed of the

mass center of the object. At time t+ h, V t+h denotes the speed

at the position where the mass center was at time t.
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In order to correct V t+h we have to apply the rigid speed function

V t+h + ωt+h × x at position V h. The result is

V
′

corr,t+h = V
′

t+h + ω × V h. We see that V
′

corr,t+h = V t + h F
M
, so

that the correction term disappears.

In general, one must be very very careful applying the correction

term ω × V . I have seen errors in text books, and also have made

errors by myself.

If one uses different coordinate systems, e.g. body coordinates

based on Euler angles, the situation gets even worse, because the

correction term may be hard to recognize.
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