Querying Best Paths in Graph Databases

Jakub Michaliszyn, Jan Otop, Piotr Wieczorek

University of Wroctaw, Poland

December 14, 2017

17

Graph Databases

likes

/E—\ Li has seen |

e an
likes 1\7 knows W

likes earns has

@ likes ‘ likes
needs

sleeping fishing researching

)

Regular Path Queries

x =™ y A ((likes + knows)* - has) ()

/17

Regular Path Queries

x =™ y A ((likes + knows)* - has) ()

likes

(Eve)

- Eve
likes knows

h
>|:;V/ as seen @

earns has

&

17

Regular Path Queries

x =™ y A ((likes + knows)* - has) ()

likes

(Eve)

- Eve
likes knows

h
>I:i4v(as seen @

earns has

<@

/17

Regular Path Queries

x =™ y A ((likes + knows)* - has) ()

likes

(Eve)

- Eve
likes knows

h
>I:i4v(as seen @

earns has
\

» PSPACE-complete (combined complexity)

Evaluation

» NL-complete (data complexity)

/17

Extensions of RPQs

» conjunctions of RPQs, inverses,

17

Extensions of RPQs

» conjunctions of RPQs, inverses,

» comparing paths: ECRPQs (regular relations), +linear
constraints (Barcelo, Libkin, Lin, Wood),

17

Extensions of RPQs

» conjunctions of RPQs, inverses,

» comparing paths: ECRPQs (regular relations), +linear
constraints (Barcelo, Libkin, Lin, Wood),

» data values (properties)?

» register automata and regular queries with memory (Vrgo€ and
Libkin)

» LARE (arithmetical regular expressions) (Grabori, Michaliszyn,
Otop, Wieczorek)

17

Our approach: (O)PRA

» the comparison of paths and the use of data values,

» aggregation of data values along paths,

» computation of extremal values among aggregated data.
» modular structure (views/ontologies),

» good expressive power: subsumes earlier approaches,

» good complexity: PSPACE-complete (combined) and
NL-complete (data),

Graph Databases: labellings

likes

(Eve)

has seen

- Eve
likes knows

Liv

has

earns

Ferrari

lan

17

Graph Databases: labellings

ORNORRO

>

/17

Graph Databases: labellings

ORNORRO

name(ny) = Joe

name(ny) = Eve

17

Graph Databases: labellings

ORROBRONNO

name(ny) = Joe

name(ny) = Eve

edge(ny, ny) = true
edge(no, n3) = true

edge(ny, ns) = false

®

Graph Databases: labellings

ORNORRO

name(n;) =11

name(n) =22

edge(ny,m) =1
edge(nz,n3) =1
edge(n, ns) =0

®

17

Graph Databases: labellings

ORNORRO

name(n;) =11

name(n) =22

edge(ny,m) =1
edge(nz,n3) =1
edge(n, ns) =0

attr(ns) = -108

®

17

Building blocks: Node constraints

» x =™ y A ((likes + knows) ™ - has)(7)
Regular Path Queries - regular expressions over labels of edges

17

Building blocks: Node constraints

» x =™ y A ((likes + knows) ™ - has)(7)
Regular Path Queries - regular expressions over labels of edges

» More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

17

Building blocks: Node constraints

» x =™ y A ((likes + knows) ™ - has)(7)
Regular Path Queries - regular expressions over labels of edges

» More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

» We can access special vars:

C, is the current node,

1 is the next node (a kind of look-ahead).

17

Building blocks: Node constraints

» x =™ y A ((likes + knows) ™ - has)(7)
Regular Path Queries - regular expressions over labels of edges
» More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?
» We can access special vars:
C, is the current node,
C] is the next node (a kind of look-ahead).

» Node constraints (new alphabet):
(edge(Cq,C}) = 1),
(type(C1) =7)

17

Building blocks: Node constraints

x =™ y A ((likes + knows)* - has) ()

Regular Path Queries - regular expressions over labels of edges
More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

We can access special vars:

C, is the current node,

C] is the next node (a kind of look-ahead).

Node constraints (new alphabet):
(edge(Cq,C}) = 1),
(type(C1) =7)

In general: (X < X'), (X < X"),(X = X')
where X, X" are integer constants or labellings applied to vars
(including C;).

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

(o c,

- @—(—

©

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

!/

C c,
- (O—@—®

=)

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

17

Building blocks: Regular constraints

Regular expressions over a path:
» (attr(Cyq) < attr(CY))*(T)(7)

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

> ({type(C1) =7) + (edge(Cy, Ca) = 1))* (71, m2)

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

» ((type(Cy1) =7) + (edge(Cy,Cy) = 1))* (71, m2)
m (D) @ CI) C? @

1
-0 O O O O O

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

» ((type(Cy1) =7) + (edge(Cy,Cy) = 1))* (71, m2)
@ C? C? @
O O O O

C: c,
@ @
" c2. cgo

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

> ({type(C1) =7) + (edge(Cy, Ca) = 1))* (71, m2)

Yo NO c? c? @
0O @0 0 O O

Co

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

» ((type(Cy1) =7) + (edge(Cy,Cy) = 1))* (71, m2)
C; C]
m (D) @ C? C? @

I
0 0 0.0 O O

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

> ({type(C1) =7) + (edge(Cy, Ca) = 1))* (71, m2)

W @ @ C't? @
- O .00 O

C

@
|
O

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

> ({type(C1) =7) + (edge(Cy, Ca) = 1))* (71, m2)

5 @ @c?c
= O 00 .00

1 (o4

@
|
O

17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

» Here, C; is the current node on the j-th path
C! is the next node on the j-th path.

> ({type(C1) =7) + (edge(Cy, Ca) = 1))* (71, m2)

" @
= O

° 77

1
000 0.

17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

» c1 Ay + ...+ ¢jA; < o, where ¢; are constants and
Aj is some_labelling[7, ..., mj |.

10/17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

» c1 Ay + ...+ ¢jA; < o, where ¢; are constants and
Aj is some_labelling[7, ..., mj |.

» Semantics: Y.7_; some_labelling(m; [i],...,m; [i]).

10/17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

» c1 Ay + ...+ ¢jA; < o, where ¢; are constants and

Aj is some_labelling[7, ..., mj |.
» Semantics: Y.7_; some_labelling(m; [i],...,m; [i]).
Examples

» time[7] < 10 (total time to go over the path 7 is < 10);

10/17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

» c1 Ay + ...+ ¢jA; < o, where ¢; are constants and

Aj is some_labelling[7, ..., mj |.
» Semantics: Y.7_; some_labelling(m; [i],...,m; [i]).
Examples

» time[7] < 10 (total time to go over the path 7 is < 10);

» attr[7] —one[m] < 0 (the average attractiveness of 7 is < 1);

10/17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

» c1 Ay + ...+ ¢jA; < o, where ¢; are constants and

Aj is some_labelling[7, ..., mj |.
» Semantics: Y.7_; some_labelling(m; [i],...,m; [i]).
Examples

» time[7] < 10 (total time to go over the path 7 is < 10);
» attr[7] —one[m] < 0 (the average attractiveness of 7 is < 1);

» time[m] — time[m2] < 0 (path 7y is faster than m2);

10/17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

» c1 Ay + ...+ ¢jA; < o, where ¢; are constants and

Aj is some_labelling[7, ..., mj |.
» Semantics: Y.7_; some_labelling(m; [i],...,m; [i]).
Examples

» time[7] < 10 (total time to go over the path 7 is < 10);
» attr[7] —one[m] < 0 (the average attractiveness of 7 is < 1);
» time[m] — time[m2] < 0 (path 7y is faster than m2);

» edge[m1,m2] <5 (number of edges between the corresponding
places in w1 and 7y is < 5).

10/17

Example map-representing graph

type:park
time:60
attr:30

type:bus
time:15
attr:-2

type:tram
time:10
attr:40

type:squar¢
time:10
attr:5

type:walk
time:100
attr:10

11 /17

PRA Examples

type:tram
time:10
attr:40

type:square
time:10
attr:5

route() := (edge(Cy,Cy) = 1)*(T)()

12 /17

PRA Examples

type:tram
time:10
attr:40

type:square
time:10
attr:5

route() := (edge(Cy,Cy) = 1)*(T)()

MATCH NODES (s,t) SUCH THAT s —" t WHERE route(w)
HAVING time[n] < 360 A attr[7] > 100

12 /17

PRA Examples

type:park
time:60
attr:30

type:tram
time:10
attr:40

type:square
time:10
attr:5

MATCH NODES (s,t) SUCH THAT s -7 t

WHERE route(m) A (type(Ci) = Ciram)* (0)A (

type(C1) = Cous)+

type(C1) = Cwalk)+

type(cl) = Ctram)+
)

o~ o~~~

edge(Cy,Cy) = 1))*(m, p)

12 /17

OPRA: defining new labellings

Values for new labellings are specified with terms.
t(x) 2= | A7) | 1Q()] | min Q(7,7) | max Q(y, m)
|y =y [£(t(), ... t()) [F({t(x): t(x,¥)})

where f, f" ¢ {Max, MIN, COUNT, SUM, +, —, -, < (assuming O for
false and 1 for true)

Then, we may write LET Aj:=ty,..., A\,:=t, IN Q.

13 /17

OPRA Example: new labelling

LET walk_time(x) :=

(type(x) = Cwalk) - time(x) IN

MATCH NODES (s,t) SUCH THAT s —" ¢t
WHERE route(n) HAVING walk_time[n] < 10

14 /17

OPRA Example: nested query

type:park
time:60
attr:30

LET crowded(x) :=

[MATCH NODES (x) SUCH THAT x —7 y WHERE

route(m) A (T)*(attr(Cy) > 100)(7r) HAVING time[w] <10] IN
MATCH PATHS (7) WHERE route(w) A {(crowded(C;) = 0)* ()

15 /17

OPRA Example: most attractive but in minimum time

type:tram

time:10
attr:40

MATCH NODES (s,t) SUCH THAT s —" t WHERE route(r)
HAVING

(attr[w] = MaXattr,p Qroute(57 t, p))/\
(time[w] = mintime,p Qroute(57 tvp))

16 /17

Our results

Theorem (Expressivity)

& &
CD G O €O

Theorem (Complexity)
Query answering for OPRA is PSPACE-complete (combined
complexity) and NL-complete (data complexity).

17 /17

