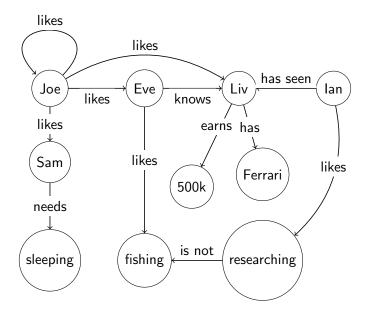
Querying Best Paths in Graph Databases

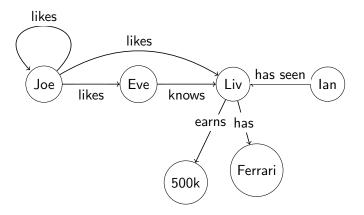
Jakub Michaliszyn, Jan Otop, Piotr Wieczorek

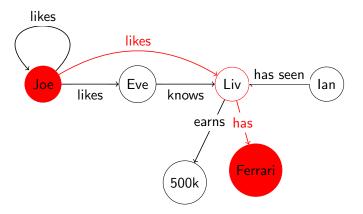
University of Wrocław, Poland

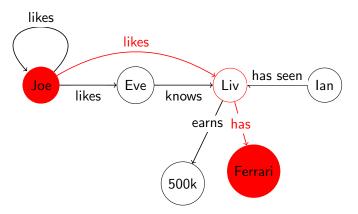
December 14, 2017

Graph Databases









Evaluation

- PSPACE-complete (combined complexity)
- NL-complete (data complexity)

conjunctions of RPQs, inverses,

Extensions of RPQs

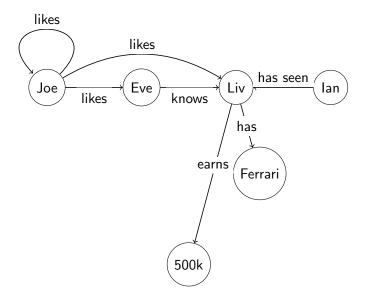
- conjunctions of RPQs, inverses,
- comparing paths: ECRPQs (regular relations), +linear constraints (Barcelo, Libkin, Lin, Wood),

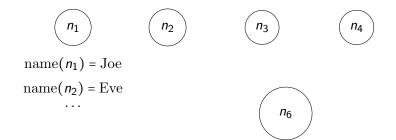
Extensions of RPQs

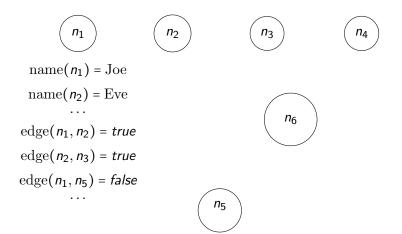
- conjunctions of RPQs, inverses,
- comparing paths: ECRPQs (regular relations), +linear constraints (Barcelo, Libkin, Lin, Wood),
- data values (properties)?
 - register automata and regular queries with memory (Vrgoč and Libkin)
 - LARE (arithmetical regular expressions) (Graboń, Michaliszyn, Otop, Wieczorek)

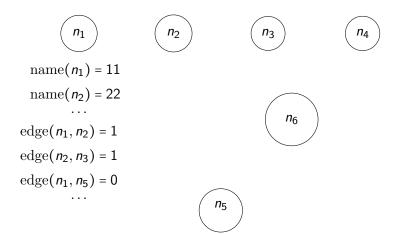
Our approach: (O)PRA

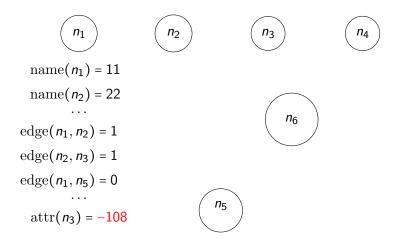
- the comparison of paths and the use of data values,
- aggregation of data values along paths,
- computation of extremal values among aggregated data.
- modular structure (views/ontologies),
- good expressive power: subsumes earlier approaches,
- good complexity: PSPACE-complete (combined) and NL-complete (data),











x →^π y ∧ ((likes + knows)* · has)(π)
 Regular Path Queries - regular expressions over labels of edges

- x →^π y ∧ ((likes + knows)* · has)(π)
 Regular Path Queries regular expressions over labels of edges
- More general alphabet: testing data values in nodes?, edges?, labellings values for tuples of nodes?

- x →^π y ∧ ((likes + knows)* · has)(π)
 Regular Path Queries regular expressions over labels of edges
- More general alphabet: testing data values in nodes?, edges?, labellings values for tuples of nodes?
- We can access special vars:
 - \mathbf{C}_1 is the current node,
 - C'_1 is the next node (a kind of look-ahead).

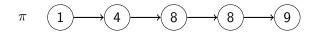
- x →^π y ∧ ((likes + knows)* · has)(π)
 Regular Path Queries regular expressions over labels of edges
- More general alphabet: testing data values in nodes?, edges?, labellings values for tuples of nodes?
- We can access special vars:
 - \mathbf{C}_1 is the current node,
 - C'_1 is the next node (a kind of look-ahead).
- Node constraints (new alphabet):

$$\begin{aligned} & \langle \mathrm{edge}(\mathbf{C}_1,\mathbf{C}_1') = 1 \rangle, \\ & \langle \mathrm{type}(\mathbf{C}_1) = 7 \rangle \end{aligned}$$

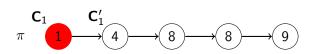
- x →^π y ∧ ((likes + knows)* · has)(π)
 Regular Path Queries regular expressions over labels of edges
- More general alphabet: testing data values in nodes?, edges?, labellings values for tuples of nodes?
- We can access special vars:
 - \mathbf{C}_1 is the current node,
 - C'_1 is the next node (a kind of look-ahead).
- Node constraints (new alphabet): $\langle edge(\mathbf{C}_1, \mathbf{C}'_1) = 1 \rangle$,
 - $\langle \mathrm{type}(\boldsymbol{C}_1) = 7 \rangle$
- In general: ⟨X ≤ X'⟩, ⟨X < X'⟩, ⟨X = X'⟩ where X, X' are integer constants or labellings applied to vars (including C_i).

Regular expressions over a path:

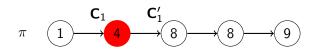
Regular expressions over a path:



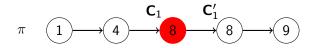
Regular expressions over a path:



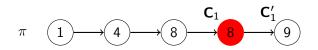
Regular expressions over a path:



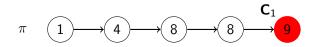
Regular expressions over a path:



Regular expressions over a path:



Regular expressions over a path:

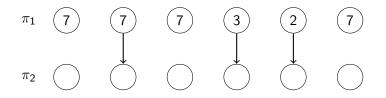


Regular expressions over a tuple of paths (like in ECRPQs)

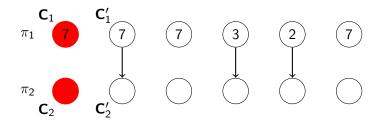
Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.

- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$

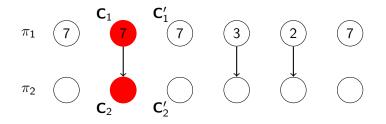
- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



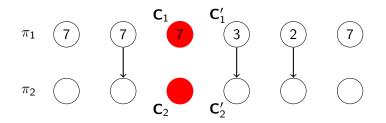
- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



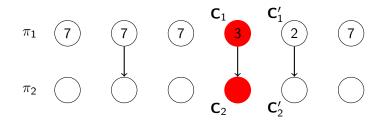
- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



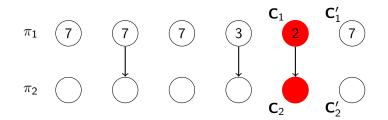
- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



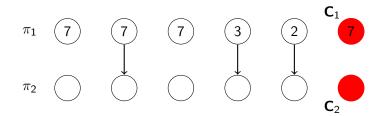
- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

- Here, C_i is the current node on the *i*-th path C'_i is the next node on the *i*-th path.
- $\bullet \ (\langle \operatorname{type}(\mathsf{C}_1) = 7 \rangle + \langle \operatorname{edge}(\mathsf{C}_1, \mathsf{C}_2) = 1 \rangle)^*(\pi_1, \pi_2)$



Allow to compare boolean combinations of sums along paths:

• $c_1\Lambda_1 + \ldots + c_j\Lambda_j \leq c_0$, where c_i are constants and Λ_i is some_labelling $[\pi_{i_1}, \ldots, \pi_{i_k}]$.

Allow to compare boolean combinations of sums along paths:

- $c_1\Lambda_1 + \ldots + c_j\Lambda_j \leq c_0$, where c_i are constants and Λ_i is some_labelling $[\pi_{i_1}, \ldots, \pi_{i_k}]$.
- Semantics: $\sum_{i=1}^{s}$ some_labelling $(\pi_{i_1}[i], \ldots, \pi_{i_k}[i])$.

Allow to compare boolean combinations of sums along paths:

- $c_1\Lambda_1 + \ldots + c_j\Lambda_j \leq c_0$, where c_i are constants and Λ_i is some_labelling $[\pi_{i_1}, \ldots, \pi_{i_k}]$.
- Semantics: $\sum_{i=1}^{s}$ some_labelling $(\pi_{i_1}[i], \ldots, \pi_{i_k}[i])$.

Examples

• time $[\pi] \leq 10$ (total time to go over the path π is ≤ 10);

Allow to compare boolean combinations of sums along paths:

- $c_1\Lambda_1 + \ldots + c_j\Lambda_j \leq c_0$, where c_i are constants and Λ_i is some_labelling $[\pi_{i_1}, \ldots, \pi_{i_k}]$.
- Semantics: $\sum_{i=1}^{s}$ some_labelling $(\pi_{i_1}[i], \ldots, \pi_{i_k}[i])$.

Examples

- time $[\pi] \leq 10$ (total time to go over the path π is ≤ 10);
- $\operatorname{attr}[\pi] \operatorname{one}[\pi] \leq 0$ (the average attractiveness of π is ≤ 1);

Allow to compare boolean combinations of sums along paths:

- $c_1\Lambda_1 + \ldots + c_j\Lambda_j \leq c_0$, where c_i are constants and Λ_i is some_labelling $[\pi_{i_1}, \ldots, \pi_{i_k}]$.
- Semantics: $\sum_{i=1}^{s}$ some_labelling $(\pi_{i_1}[i], \ldots, \pi_{i_k}[i])$.

Examples

- time $[\pi] \leq 10$ (total time to go over the path π is ≤ 10);
- $\operatorname{attr}[\pi] \operatorname{one}[\pi] \leq 0$ (the average attractiveness of π is ≤ 1);
- time $[\pi_1]$ time $[\pi_2] \leq 0$ (path π_1 is faster than π_2);

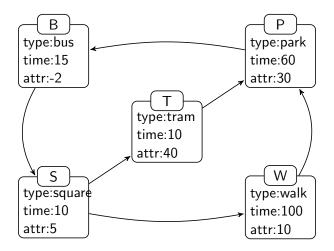
Allow to compare boolean combinations of sums along paths:

- $c_1\Lambda_1 + \ldots + c_j\Lambda_j \leq c_0$, where c_i are constants and Λ_i is some_labelling $[\pi_{i_1}, \ldots, \pi_{i_k}]$.
- Semantics: $\sum_{i=1}^{s} \text{some_labelling}(\pi_{i_1}[i], \dots, \pi_{i_k}[i]).$

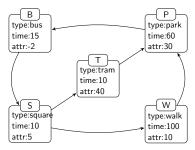
Examples

- time $[\pi] \leq 10$ (total time to go over the path π is ≤ 10);
- $\operatorname{attr}[\pi] \operatorname{one}[\pi] \leq 0$ (the average attractiveness of π is ≤ 1);
- time $[\pi_1]$ time $[\pi_2] \leq 0$ (path π_1 is faster than π_2);
- edge $[\pi_1, \pi_2] \le 5$ (number of edges between the corresponding places in π_1 and π_2 is ≤ 5).

Example map-representing graph

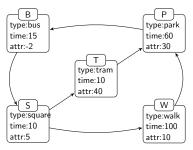


PRA Examples



 $\operatorname{route}(\pi)\coloneqq \langle \operatorname{edge}(\mathsf{C}_1,\mathsf{C}_1')=1\rangle^*\langle \top\rangle(\pi)$

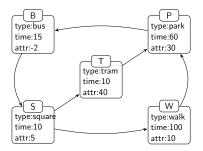
PRA Examples



 $\operatorname{route}(\pi) \coloneqq \langle \operatorname{edge}(\mathsf{C}_1,\mathsf{C}_1') = 1 \rangle^* \langle \top \rangle(\pi)$

MATCH NODES (s, t) SUCH THAT $s \to \pi t$ WHERE route (π) HAVING time $[\pi] \le 360 \land \operatorname{attr}[\pi] > 100$

PRA Examples



MATCH NODES
$$(s, t)$$
 SUCH THAT $s \to^{\pi} t$
WHERE route $(\pi) \land \langle type(\mathbf{C}_1) = c_{tram} \rangle^*(\rho) \land (\langle type(\mathbf{C}_1) = c_{bus} \rangle + \langle type(\mathbf{C}_1) = c_{walk} \rangle + \langle type(\mathbf{C}_1) = c_{tram} \rangle + \langle edge(\mathbf{C}_1, \mathbf{C}_2) = 1 \rangle)^*(\pi, \rho)$

OPRA: defining new labellings

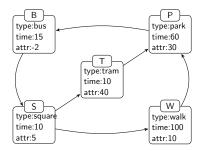
Values for new labellings are specified with terms.

$$t(\vec{x}) \coloneqq c \mid \lambda(\vec{y}) \mid [Q(\vec{y})] \mid \min_{\lambda,\pi} Q(\vec{y},\pi) \mid \max_{\lambda,\pi} Q(\vec{y},\pi)$$
$$\mid y = y \mid f(t(\vec{y}), \dots, t(\vec{y})) \mid f'(\{t(x): t(x,\vec{y})\})$$

where $f, f' \in \{MAX, MIN, COUNT, SUM, +, -, \cdot, \leq (assuming 0 \text{ for false and 1 for true})$

Then, we may write LET $\lambda_1 := t_1, \ldots, \lambda_n := t_n$ IN Q.

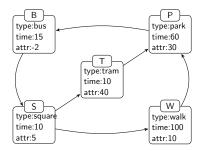
OPRA Example: new labelling



LET walk_time(x) :=

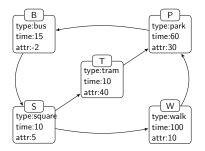
$$(type(x) = c_{walk}) \cdot time(x)$$
 IN
MATCH NODES (s, t) SUCH THAT $s \rightarrow^{\pi} t$
WHERE route (π) HAVING walk_time $[\pi] \leq 10$

OPRA Example: nested query



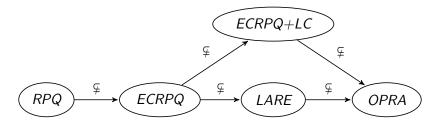
LET crowded(x) := [MATCH NODES (x) SUCH THAT $x \to^{\pi} y$ WHERE route $(\pi) \land \langle \top \rangle^* \langle \operatorname{attr}(\mathbf{C}_1) > 100 \rangle(\pi)$ HAVING time $[\pi] \le 10$] IN MATCH PATHS (π) WHERE route $(\pi) \land \langle \operatorname{crowded}(\mathbf{C}_1) = 0 \rangle^*(\pi)$

OPRA Example: most attractive but in minimum time



MATCH NODES (s, t) SUCH THAT $s \to^{\pi} t$ WHERE $route(\pi)$ HAVING $(attr[\pi] = max_{attr,\rho} Q_{route}(s, t, \rho)) \land$ $(time[\pi] = min_{time,\rho} Q_{route}(s, t, \rho))$ Our results

Theorem (Expressivity)



Theorem (Complexity)

Query answering for OPRA is PSPACE-complete (combined complexity) and NL-complete (data complexity).