
Querying Best Paths in Graph Databases

Jakub Michaliszyn, Jan Otop, Piotr Wieczorek

University of Wroc law, Poland

December 14, 2017

1 / 17

Graph Databases

Joe Eve Liv Ian

Sam

500k
Ferrari

sleeping fishing researching

likes knows

likes

earns

has seen

likes

has

is not

needs

likes

likes

likes

2 / 17

Regular Path Queries
x →π y ∧ ((likes + knows)∗ ⋅ has)(π)

Eve Ian

500k

earns

has seen

likes

Evaluation

▸ PSPACE-complete (combined complexity)

▸ NL-complete (data complexity)

3 / 17

Regular Path Queries
x →π y ∧ ((likes + knows)∗ ⋅ has)(π)

Joe Eve Liv Ian

500k
Ferrari

likes knows

likes

earns

has seen

has

likes

Evaluation

▸ PSPACE-complete (combined complexity)

▸ NL-complete (data complexity)

3 / 17

Regular Path Queries
x →π y ∧ ((likes + knows)∗ ⋅ has)(π)

Joe Eve Liv Ian

500k
Ferrari

likes knows

likes

earns

has seen

has

likes

Evaluation

▸ PSPACE-complete (combined complexity)

▸ NL-complete (data complexity)

3 / 17

Regular Path Queries
x →π y ∧ ((likes + knows)∗ ⋅ has)(π)

Joe Eve Liv Ian

500k
Ferrari

likes knows

likes

earns

has seen

has

likes

Evaluation

▸ PSPACE-complete (combined complexity)

▸ NL-complete (data complexity)
3 / 17

Extensions of RPQs

▸ conjunctions of RPQs, inverses,

▸ comparing paths: ECRPQs (regular relations), +linear
constraints (Barcelo, Libkin, Lin, Wood),

▸ data values (properties)?
▸ register automata and regular queries with memory (Vrgoč and

Libkin)
▸ LARE (arithmetical regular expressions) (Graboń, Michaliszyn,

Otop, Wieczorek)

4 / 17

Extensions of RPQs

▸ conjunctions of RPQs, inverses,

▸ comparing paths: ECRPQs (regular relations), +linear
constraints (Barcelo, Libkin, Lin, Wood),

▸ data values (properties)?
▸ register automata and regular queries with memory (Vrgoč and

Libkin)
▸ LARE (arithmetical regular expressions) (Graboń, Michaliszyn,

Otop, Wieczorek)

4 / 17

Extensions of RPQs

▸ conjunctions of RPQs, inverses,

▸ comparing paths: ECRPQs (regular relations), +linear
constraints (Barcelo, Libkin, Lin, Wood),

▸ data values (properties)?
▸ register automata and regular queries with memory (Vrgoč and

Libkin)
▸ LARE (arithmetical regular expressions) (Graboń, Michaliszyn,

Otop, Wieczorek)

4 / 17

Our approach: (O)PRA

▸ the comparison of paths and the use of data values,

▸ aggregation of data values along paths,

▸ computation of extremal values among aggregated data.

▸ modular structure (views/ontologies),

▸ good expressive power: subsumes earlier approaches,

▸ good complexity: PSPACE-complete (combined) and
NL-complete (data),

5 / 17

Graph Databases: labellings

Joe Eve Liv Ian

500k

Ferrari

likes knows

likes

earns

has seen

has

likes

6 / 17

Graph Databases: labellings

n1 n2 n3 n4

n5

n6

6 / 17

Graph Databases: labellings

n1 n2 n3 n4

n5

n6

name(n1) = Joe

name(n2) = Eve
. . .

6 / 17

Graph Databases: labellings

n1 n2 n3 n4

n5

n6

name(n1) = Joe

name(n2) = Eve
. . .

edge(n1,n2) = true

edge(n2,n3) = true

edge(n1,n5) = false
. . .

6 / 17

Graph Databases: labellings

n1 n2 n3 n4

n5

n6

name(n1) = 11

name(n2) = 22
. . .

edge(n1,n2) = 1

edge(n2,n3) = 1

edge(n1,n5) = 0
. . .

6 / 17

Graph Databases: labellings

n1 n2 n3 n4

n5

n6

name(n1) = 11

name(n2) = 22
. . .

edge(n1,n2) = 1

edge(n2,n3) = 1

edge(n1,n5) = 0
. . .

attr(n3) = −108

6 / 17

Building blocks: Node constraints

▸ x →π y ∧ ((likes + knows)∗ ⋅ has)(π)
Regular Path Queries - regular expressions over labels of edges

▸ More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

▸ We can access special vars:
C1 is the current node,
C′1 is the next node (a kind of look-ahead).

▸ Node constraints (new alphabet):
⟨edge(C1,C

′

1) = 1⟩,
⟨type(C1) = 7⟩

▸ In general: ⟨X ≤ X ′⟩, ⟨X < X ′⟩, ⟨X = X ′⟩
where X ,X ′ are integer constants or labellings applied to vars
(including Ci).

7 / 17

Building blocks: Node constraints

▸ x →π y ∧ ((likes + knows)∗ ⋅ has)(π)
Regular Path Queries - regular expressions over labels of edges

▸ More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

▸ We can access special vars:
C1 is the current node,
C′1 is the next node (a kind of look-ahead).

▸ Node constraints (new alphabet):
⟨edge(C1,C

′

1) = 1⟩,
⟨type(C1) = 7⟩

▸ In general: ⟨X ≤ X ′⟩, ⟨X < X ′⟩, ⟨X = X ′⟩
where X ,X ′ are integer constants or labellings applied to vars
(including Ci).

7 / 17

Building blocks: Node constraints

▸ x →π y ∧ ((likes + knows)∗ ⋅ has)(π)
Regular Path Queries - regular expressions over labels of edges

▸ More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

▸ We can access special vars:
C1 is the current node,
C′1 is the next node (a kind of look-ahead).

▸ Node constraints (new alphabet):
⟨edge(C1,C

′

1) = 1⟩,
⟨type(C1) = 7⟩

▸ In general: ⟨X ≤ X ′⟩, ⟨X < X ′⟩, ⟨X = X ′⟩
where X ,X ′ are integer constants or labellings applied to vars
(including Ci).

7 / 17

Building blocks: Node constraints

▸ x →π y ∧ ((likes + knows)∗ ⋅ has)(π)
Regular Path Queries - regular expressions over labels of edges

▸ More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

▸ We can access special vars:
C1 is the current node,
C′1 is the next node (a kind of look-ahead).

▸ Node constraints (new alphabet):
⟨edge(C1,C

′

1) = 1⟩,
⟨type(C1) = 7⟩

▸ In general: ⟨X ≤ X ′⟩, ⟨X < X ′⟩, ⟨X = X ′⟩
where X ,X ′ are integer constants or labellings applied to vars
(including Ci).

7 / 17

Building blocks: Node constraints

▸ x →π y ∧ ((likes + knows)∗ ⋅ has)(π)
Regular Path Queries - regular expressions over labels of edges

▸ More general alphabet: testing data values in nodes?, edges?,
labellings values for tuples of nodes?

▸ We can access special vars:
C1 is the current node,
C′1 is the next node (a kind of look-ahead).

▸ Node constraints (new alphabet):
⟨edge(C1,C

′

1) = 1⟩,
⟨type(C1) = 7⟩

▸ In general: ⟨X ≤ X ′⟩, ⟨X < X ′⟩, ⟨X = X ′⟩
where X ,X ′ are integer constants or labellings applied to vars
(including Ci).

7 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π

11

C1 C′1
44

C1 C′1
88

C1 C′1
88

C1 C′1
99

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π 1

1

C1 C′1

4

4

C1 C′1

8

8

C1 C′1

8

8

C1 C′1

9

9

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π

1

1

C1 C′1
4

4

C1 C′1

8

8

C1 C′1

8

8

C1 C′1

9

9

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π 1

1

C1 C′1
4

4

C1 C′1
8

8

C1 C′1

8

8

C1 C′1

9

9

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π 1

1

C1 C′1

4

4

C1 C′1
8

8

C1 C′1
8

8

C1 C′1

9

9

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π 1

1

C1 C′1

4

4

C1 C′1

8

8

C1 C′1
8

8

C1 C′1
9

9

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a path:

▸ ⟨attr(C1) ≤ attr(C′1)⟩∗⟨⊺⟩(π)

π 1

1

C1 C′1

4

4

C1 C′1

8

8

C1 C′1

8

8

C1 C′1
9

9

C1

8 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

77

C1

C2

C′1

C′2

77

C1

C2

C′1

C′2

77

C1

C2

C′1

C′2

33

C1

C2

C′1

C′2

22

C1

C2

C′1

C′2

77

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

77

C1

C2

C′1

C′2

77

C1

C2

C′1

C′2

77

C1

C2

C′1

C′2

33

C1

C2

C′1

C′2

22

C1

C2

C′1

C′2

77

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Regular constraints

Regular expressions over a tuple of paths (like in ECRPQs)

▸ Here, Ci is the current node on the i-th path
C′i is the next node on the i-th path.

▸ (⟨type(C1) = 7⟩ + ⟨edge(C1,C2) = 1⟩)∗(π1, π2)

π1

π2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

7

7

C1

C2

C′1

C′2

3

3

C1

C2

C′1

C′2

2

2

C1

C2

C′1

C′2

7

7

C1

C2

9 / 17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

▸ c1Λ1 + . . . + cjΛj ≤ c0, where ci are constants and
Λi is some labelling[πi1 , . . . , πik].

▸ Semantics: ∑s
i=1 some labelling(πi1[i], . . . , πik [i]).

Examples

▸ time[π] ≤ 10 (total time to go over the path π is ≤ 10);

▸ attr[π] − one[π] ≤ 0 (the average attractiveness of π is ≤ 1);

▸ time[π1] − time[π2] ≤ 0 (path π1 is faster than π2);

▸ edge[π1, π2] ≤ 5 (number of edges between the corresponding
places in π1 and π2 is ≤ 5).

10 / 17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

▸ c1Λ1 + . . . + cjΛj ≤ c0, where ci are constants and
Λi is some labelling[πi1 , . . . , πik].

▸ Semantics: ∑s
i=1 some labelling(πi1[i], . . . , πik [i]).

Examples

▸ time[π] ≤ 10 (total time to go over the path π is ≤ 10);

▸ attr[π] − one[π] ≤ 0 (the average attractiveness of π is ≤ 1);

▸ time[π1] − time[π2] ≤ 0 (path π1 is faster than π2);

▸ edge[π1, π2] ≤ 5 (number of edges between the corresponding
places in π1 and π2 is ≤ 5).

10 / 17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

▸ c1Λ1 + . . . + cjΛj ≤ c0, where ci are constants and
Λi is some labelling[πi1 , . . . , πik].

▸ Semantics: ∑s
i=1 some labelling(πi1[i], . . . , πik [i]).

Examples

▸ time[π] ≤ 10 (total time to go over the path π is ≤ 10);

▸ attr[π] − one[π] ≤ 0 (the average attractiveness of π is ≤ 1);

▸ time[π1] − time[π2] ≤ 0 (path π1 is faster than π2);

▸ edge[π1, π2] ≤ 5 (number of edges between the corresponding
places in π1 and π2 is ≤ 5).

10 / 17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

▸ c1Λ1 + . . . + cjΛj ≤ c0, where ci are constants and
Λi is some labelling[πi1 , . . . , πik].

▸ Semantics: ∑s
i=1 some labelling(πi1[i], . . . , πik [i]).

Examples

▸ time[π] ≤ 10 (total time to go over the path π is ≤ 10);

▸ attr[π] − one[π] ≤ 0 (the average attractiveness of π is ≤ 1);

▸ time[π1] − time[π2] ≤ 0 (path π1 is faster than π2);

▸ edge[π1, π2] ≤ 5 (number of edges between the corresponding
places in π1 and π2 is ≤ 5).

10 / 17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

▸ c1Λ1 + . . . + cjΛj ≤ c0, where ci are constants and
Λi is some labelling[πi1 , . . . , πik].

▸ Semantics: ∑s
i=1 some labelling(πi1[i], . . . , πik [i]).

Examples

▸ time[π] ≤ 10 (total time to go over the path π is ≤ 10);

▸ attr[π] − one[π] ≤ 0 (the average attractiveness of π is ≤ 1);

▸ time[π1] − time[π2] ≤ 0 (path π1 is faster than π2);

▸ edge[π1, π2] ≤ 5 (number of edges between the corresponding
places in π1 and π2 is ≤ 5).

10 / 17

Building blocks: Arithmetical constraints

Allow to compare boolean combinations of sums along paths:

▸ c1Λ1 + . . . + cjΛj ≤ c0, where ci are constants and
Λi is some labelling[πi1 , . . . , πik].

▸ Semantics: ∑s
i=1 some labelling(πi1[i], . . . , πik [i]).

Examples

▸ time[π] ≤ 10 (total time to go over the path π is ≤ 10);

▸ attr[π] − one[π] ≤ 0 (the average attractiveness of π is ≤ 1);

▸ time[π1] − time[π2] ≤ 0 (path π1 is faster than π2);

▸ edge[π1, π2] ≤ 5 (number of edges between the corresponding
places in π1 and π2 is ≤ 5).

10 / 17

Example map-representing graph

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

11 / 17

PRA Examples

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

route(π) ∶= ⟨edge(C1,C
′

1) = 1⟩∗⟨⊺⟩(π)

MATCH NODES (s, t) SUCH THAT s →π t WHERE route(π)
HAVING time[π] ≤ 360 ∧ attr[π] > 100

12 / 17

PRA Examples

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

route(π) ∶= ⟨edge(C1,C
′

1) = 1⟩∗⟨⊺⟩(π)

MATCH NODES (s, t) SUCH THAT s →π t WHERE route(π)
HAVING time[π] ≤ 360 ∧ attr[π] > 100

12 / 17

PRA Examples

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

MATCH NODES (s, t) SUCH THAT s →π t

WHERE route(π) ∧ ⟨type(C1) = ctram⟩∗(ρ)∧ (⟨type(C1) = cbus⟩+
⟨type(C1) = cwalk⟩+
⟨type(C1) = ctram⟩+
⟨edge(C1,C2) = 1⟩)∗(π, ρ)

12 / 17

OPRA: defining new labellings

Values for new labellings are specified with terms.

t(x⃗) ∶∶= c ∣ λ(y⃗) ∣ [Q(y⃗)] ∣ min
λ,π

Q(y⃗ , π) ∣ max
λ,π

Q(y⃗ , π)

∣ y = y ∣ f (t(y⃗), . . . , t(y⃗)) ∣ f ′({t(x)∶ t(x , y⃗)})

where f , f ′ ∈ {Max,Min,Count,Sum,+,−, ⋅,≤ (assuming 0 for
false and 1 for true)

Then, we may write LET λ1∶=t1, . . . , λn∶=tn IN Q.

13 / 17

OPRA Example: new labelling

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

LET walk time(x) ∶=
(type(x) = cwalk) ⋅ time(x) IN

MATCH NODES (s, t) SUCH THAT s →π t

WHERE route(π) HAVING walk time[π] ≤ 10

14 / 17

OPRA Example: nested query

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

LET crowded(x) ∶=
[MATCH NODES (x) SUCH THAT x →π y WHERE

route(π) ∧ ⟨⊺⟩∗⟨attr(C1) > 100⟩(π) HAVING time[π] ≤ 10] IN

MATCH PATHS (π) WHERE route(π) ∧ ⟨crowded(C1) = 0⟩∗(π)

15 / 17

OPRA Example: most attractive but in minimum time

type:square
time:10
attr:5

S

type:tram
time:10
attr:40

T

type:park
time:60
attr:30

P

type:walk
time:100
attr:10

W

type:bus
time:15
attr:-2

B

MATCH NODES (s, t) SUCH THAT s →π t WHERE route(π)
HAVING

(attr[π] = maxattr,ρQroute(s, t, ρ))∧
(time[π] = mintime,ρQroute(s, t, ρ))

16 / 17

Our results

Theorem (Expressivity)

ECRPQRPQ

ECRPQ+LC

LARE OPRA

⊊

⊊

⊊

⊊⊊

Theorem (Complexity)

Query answering for OPRA is PSPACE-complete (combined
complexity) and NL-complete (data complexity).

17 / 17

