
Modulo Constraints and the Complexity of

Typechecking XML Views ⋆ ⋆⋆

Jerzy Marcinkowski and Piotr Wieczorek

Institute of Computer Science,
University of Wroc law, Poland

Abstract. The typechecking problem for transformations of relational
data into tree data is the following: given a relational-to-XML trans-
formation P , and an XML type d, decide whether for every database
instance D the result of the transformation P on D satisfies d. TreeQL
programs with projection-free conjunctive queries (see [2]) are consid-
ered as transformations and DTDs with arbitrary regular expressions as
XML types.
A non-elementary upper bound for the typechecking problem was already
given by Alon et al. [2] (although in a more general setting, where equal-
ity and negation in projection-free conjunctive queries and additional
universal integrity constraints are allowed).
In this paper we show that the typechecking problem is coNEXPTIME-
complete.
As an intermediate step we consider the following problem, which can be
formulated independently of XML notions. Given a set of triples of the
form (ϕ, k, j), where ϕ is a projection-free conjunctive query and k, j are
natural numbers, decide whether there exists a database D such that,
for each triple (ϕ, k, j) in the set, there exists a natural number α, such
that there are exactly k + j ∗ α tuples satisfying the query ϕ in D. Our
main technical contribution consists of a NEXPTIME algorithm for the
last problem.

1 Introduction

During the last few years, XML [19] has become the standard in data exchange
on the web. Since the data to be exchanged is most commonly stored in rela-
tional databases, one uses transformation programs to automatically transform
the relational data into actual XML. In order to ensure that this data is correctly
interpreted by all receivers, the generated XML is required to be of a specific
agreed-upon type. Here, a type is essentially just a set of trees (i.e., a tree lan-
guage). Many proposals for defining such types exist, amongst them DTDs [19],
XML Schemas [20], and RELAX NG [5] definitions. Here, RELAX NG is the

⋆ Partially supported by Polish Ministry of Science and Higher Education research
project N206022 31/3660, 2006/2009.

⋆⋆ This paper is an extended version of [21], where the coNEXPTIME upper bound
was shown.

most powerful, as it can define the full class of regular tree languages [17], while
XML Schemas and DTDs can only define fragments of this class [15]. In general,
the relational-to-XML typechecking problem consists of deciding, given a trans-
formation program P , an output type, and a set of integrity constraints, whether
every database that satisfies the integrity constraints is transformed into a tree
in the output type. Thus, the problem is parameterized by:

– the class of transformations,
– the class of output tree languages,
– the class of integrity constraints.

Alon et al. [2] present a study of decidability and complexity of many ver-
sions of the problem. As a formalism to define transformations the authors in-
troduce TreeQL programs. TreeQL is an abstraction of practical languages such
as RXL [8]. A TreeQL program is a tree in which each node is labeled with a
symbol from a finite alphabet and with a logical formula.

The result of a TreeQL program P on a database D is a tree reflecting the
structure of P such that each node n of P is substituted by as many nodes as
there are tuples in the database D satisfying the formula at n. The nodes of the
output tree inherit, as their labels, the symbols that label nodes of the program
tree. The output type is specified by a DTD — a formalism which puts local
restrictions on trees, that is, it restricts how the sequence of child labels of a
node looks like.

Decidability results in [2] include a coNEXPTIME upper bound on type-
checking TreeQL programs with conjunctive queries (with negation and equal-
ity), DTDs with star-free regular languages as the output types and the in-
tegrity constraints in FO(∃∗∀∗). When arbitrary regular expressions are allowed
in DTDs the authors show decidability of typechecking TreeQL programs with
projection-free conjunctive queries 1 (with negation and equality) and integrity
constraints in FO(∀∗). In the latter case, however, the complexity is prohibitively
high—the proof uses a combinatorial argument based on Ramsey’s Theorem
and yields a non-elementary upper bound. It was left as an open problem in [2]
whether the bound can be improved. We show that such an improvement is
possible, at least for a restricted case: the typechecking problem for DTDs with
arbitrary regular expressions as the output types and projection-free conjunctive
queries in TreeQL programs, but without integrity constraints is coNEXPTIME-
complete.

Our approach is as follows. Inspired by the notion of the modulo property [2],
we perform the reduction of the complement of the typechecking problem to
the following problem. Given a set of triples of the form (ϕ, k, j), where ϕ is a
projection-free conjunctive query and k, j are natural numbers, decide whether
there exists a database D such that for each triple (ϕ, k, j) in the set, there
exists a natural number α, such that there are exactly k+ j ∗α tuples satisfying
the query ϕ in D. Such triples put constraints on a relational database that

1 If conjunctive queries with projections are allowed, the problem (even in our simple
setting) is not known to be decidable.

2

we call modulo constraints. The main technical part of the proof consists of a
NEXPTIME algorithm for deciding satisfiability of a set of modulo constraints.

Alon et al. [2, Theorem 4.1] show that the typechecking problem for TreeQL
programs with projection-free CQs with negation and DTDs with very simple
regular expressions is coNEXPTIME-hard. The authors of [2] note that it is open
whether this lower bound holds when negation is not allowed in the queries. In
Section 8, we give a positive answer, showing that the typechecking problem is
still coNEXPTIME-hard for TreeQL programs with projection-free CQs with-
out negation, provided that arbitrary regular expressions are allowed in DTDs.
Consequently, our coNEXPTIME upper bound for the typechecking problem is
tight. Similarly as before, first we consider the problem of satisfiability of a set
of modulo constraints and then we show the lower bound for the typechecking
problem.

Related work. The typechecking problem recently gained a lot of attention in
the literature, especially in the context of typechecking XML-to-XML transfor-
mations. As relational structures can easily be encoded as trees, this problem
is closely related to ours. In the XML-to-XML context we are given input and
output tree languages and a transformation, and we are asked whether every
tree in the input tree language is transformed to a tree in the output language.
The problem was studied in [16], where the input and output types were regular
tree languages and transformations were expressed by k-pebble transducers. As
long as the data values in trees are not considered, the problem is decidable. The
complexity, however, is non-elementary. If the nodes in trees can be equipped
with data values from an infinite domain, in addition to the tags from a finite
alphabet, then, as it was shown in [3], the problem quickly gets undecidable and
in the decidable cases the complexity is rather high.

In [12] and [13] Martens and Neven considered transformations in a form of
a single top-down traversal of the input tree, during which every node can be
replaced by a new tree, deleted or copied. Such transformations can be used for
restructuring and filtering rather than for advanced querying, but on the other
hand, the obtained complexity results range from EXPTIME to PTIME.

Macro tree transducers (mtts) [7] are a general formalism that covers many
useful XML transformations. In particular, all standard features of most XML
transformation languages can be modeled by compositions of three mtts [10].
The typechecking problem for mtts was studied in [10, 11], where, similarly as
in [16], the technique of inverse type inference was used. Inverse type inference
computes the pre-image of all ill-formed outputs. Then, the typechecking reduces
to checking whether the intersection of a given input type and the computed pre-
image is empty. The typechecking problem for mtts is decidable and there are
practical subclasses for which it is tractable [11, 9].

The all above results assume that the input and output tree languages as
well as the transformation are part of the input. If fixed input or/and output
languages are considered then the computational complexity of the typechecking
problem can be lowered in a number of cases [14].

3

Outline of the paper. The rest of the paper is organized as follows. In Sec-
tion 2 we give the necessary preliminaries. In a short Section 3 we state Theorem
5, which is our main theorem, and formulate an intermediate result – the main
lemma needed for the proof of Theorem 5. In Sections 4-6, which are the main
technical part, we prove the intermediate result. In Section 7 we use some of the
ideas from [2] and show how the intermediate result implies the main result. Fi-
nally, in Section 8 we prove the matching lower bounds, first for the intermediate
problem and then, as a consequence, the lower bound for the main problem.

2 Preliminaries

XML and XML Types. We abstract XML documents as ordered, unranked,
finite trees whose nodes are labeled with symbols from some finite alphabet Σ
(see Figure 1). We denote the label of a node v by lab(v) and the root node of
a tree t by root(t). A Document Type Definition (DTD) is a way of defining a
tree language. A DTD d specifies for each symbol σ ∈ Σ a regular expression
that defines a regular language d(σ).2 We say that a tree t satisfies d if for every
node v of t with children v1, . . . , vn the word lab(v1) . . . lab(vn) is in the regular
language d(lab(v)). If v is a leaf, then the empty word ǫ has to be in d(lab(v)).
The language of trees satisfying a DTD d is denoted by L(d).

Databases and queries. A vocabulary S is a set of relation symbols and a set
of constant symbols. A database over S or an S-structure A [1, 6] consists of a
domain dom(A), a relation RA for each relation symbol R ∈ S and an element
cA in dom(A) for each constant symbol c in S. A relation RA is a finite set of
tuples of elements of dom(A). Thus, we do not allow duplicates in our databases.
We assume that each element in dom(A) is in some tuple in some relation of
A. An atomic formula over S (an atom over S) is a formula of the form R(a),
where R is a relational symbol in S and a tuple a consists of constant symbols
from S and variables. A projection-free conjunctive query (projection-free CQ)
ϕ(x1, . . . , xn) is a conjunction of atomic formulas. By Vars(ϕ) we denote the set
of variables of ϕ (note that all variables in projection-free CQs are free).

For a formula ϕ and a variable substitution θ, by ϕ[θ] we denote the formula
ϕ after substituting each variable x of ϕ by θ(x). Let ϕ(x) be a projection-free
CQ with variables x, let A be a database and let e be a tuple of elements in
dom(A). We say that A |= ϕ(e) or e satisfies ϕ in A if there is a mapping
θ that substitutes the elements e for the variables x, such that for each atom
R(a) of ϕ[θ] the tuple a is in the relation RA. The basic projection-free CQs
cannot contain inequalities. However, we also consider projection-free CQs with
inequalities of the form x 6= y and x 6= c, where x and y are variables and c is

2 We allow the full class of regular expressions (with concatenation, union and Kleene
star), in particular we do not restrict regular expressions to be deterministic. We use
regular expressions which are not deterministic in the proof of the lower bound in
Section 8.

4

a constant symbol. Let ϕ(x) be a projection-free CQ with inequalities, let A be
a database and let e be a tuple of elements in dom(A). We say that A |= ϕ(e)
if there is a mapping θ that substitutes the elements e for the variables x, such
that for each atom R(a) of ϕ[θ] the tuple a is in RA, for each inequality of the
form x 6= y in ϕ it holds θ(x) 6= θ(y) and for each inequality of the form x 6= c
in ϕ it holds θ(x) 6= cA.

We say that A is a substructure of B if dom(A) ⊆ dom(B), for each relation
symbol R, RA is the subset of RB induced by dom(A), and for each constant
symbol c it holds that cA = cB.

A conjunctive query (CQ) ϕ(x) is a formula of the form: ∃y1 . . . ∃ynψ(x,y),
where y = y1, . . . , yn and ψ(x,y) is a projection-free CQ.

By #(ϕ,A) we denote the number of tuples satisfying a query ϕ in a database
A. Also, by |A| we denote the number of elements in a set A and by size(A) we
denote the size of A.

A canonical structure Cϕ for a projection-free conjunctive query ϕ is the
structure over the vocabulary given by ϕ defined in the following way. The
domain of Cϕ is the set of the variables and the constants of ϕ. Each constant
symbol is interpreted as itself. Each relation RCϕ is defined as the set of all tuples
a of variables and constants from atomic formulas R(a) of ϕ.

The canonical structure for a query of the form ϕ∧ψ, where ϕ is a projection-
free CQ and ψ is a conjunction of inequalities of the form x 6= y and x 6= c is
defined as Cϕ.

TreeQL and typechecking. The following definitions come from [2], but are
tailored for our setting.

Definition 1. 1. A TreeQL program is an ordered, unranked tree P with labels.
The following properties hold for P :
– The root is labeled with an element from alphabet Σ.
– Every non-root element node is labeled with a pair (σ, ϕ), where σ ∈ Σ

and ϕ is a projection-free CQ. The formula in a node v is denoted by
formula(v).

– Vars(formula(v)) ⊆ Vars(formula(v′)), for all non-root nodes v and v′,
where v′ is a descendant of v.

2. Let A be a database and P a TreeQL program. A tree P (A) generated from
A is defined as follows:
– The root is (root(P), ∅).
– The non-root nodes are the pairs (v, θ), where v is a non-root node of
P and θ is a substitution for variables Vars(formula(v)), such that A |=
ϕ[θ], for every formula ϕ labeling v or labeling an ancestor of v in P .

– The edges in P (A) are ((v, θ), (v′, θ′)) such that v′ is a child of v in P
and θ′ is an extension of θ (i.e. θ′ agrees with θ on Vars(formula(v)).

– Sibling nodes in P (A) are ordered as follows: if v and v′ are siblings in P
and v occurs before v′, then all nodes (v, θ) occur before all nodes (v′, θ′)
in P (A). For a given v in P , the ordering of nodes (v, θ) and (v, θ′)
is irrelevant in our setting, so it is not considered here (see Remark 2
below).

5

– Finally, the label of a node (v, θ) is the Σ-label of v in P .

Remark 2. We use the following observation from [2]. If d is a DTD then d does
not distinguish among trees P (A) for distinct orderings of the nodes (v, θ) and
(v, θ′), for each v in P . As we consider DTDs as XML types, we can safely ignore
the ordering of such nodes.

Definition 3. A TreeQL program P typechecks with respect to an output type
d if and only if P (A) ⊆ L(d), for every database A.

Example 4. Consider a database A containing information about car owners,
with two relations PERSON(Id, FirstName, LastName) and CARS(Id, Car):

PERSON Id FirstName LastName
1 John Smith

2 John Doe

CARS Id Car
1 Ferrari

2 Porsche

2 Ferrari

2 Mini

In Figure 1 we present a program R and a tree R(A) resulting from the
transformation of the database A by the program R. The tree R(A) satisfies the
following DTD d: d(car_owners) = name∗, d(name) = car · car∗, d(car) = ǫ.
However, the program R does not typecheck w.r.t. the DTD d because for any
database B containing information about a person without a car, the tree R(B)
does not satisfy d. In particular, it violates the requirement d(name) = car·car∗.

name, ϕ1(x, y, z) = PERSON(x, y, z)

car owners

car, ϕ2(x, y, z, w) =

PERSON(x, y, z) ∧ CARS(x, w)

(a) The program R.

car[.., w=Ferrari]

car[.., w=Porsche] car[.., w=Ferrari]

name[x=1, y=John, z=Smith] name[x=2, y=John, z=Doe]

car[.., w=Mini]

car owners

(b) The XML tree R(A) — the annotations of sub-
stitutions (in brackets) are not part of the tree.

Fig. 1. A TreeQL query and its result (Example 4).

3 The Upper Bound

Now we are able to formulate our main theorem.

Theorem 5 (Main Theorem). The problem of typechecking a TreeQL pro-
gram with projection-free conjunctive queries w.r.t. a DTD with arbitrary regular
expressions is in coNEXPTIME.

6

Sections 4-7 are devoted to proving this theorem. In Section 8 we prove
coNEXPTIME-hardness of the typechecking problem; thus the upper bound
from Theorem 5 is tight.

Definition 6. A set of modulo constraints Γ is a finite set of triples of the
form (ϕ, k, j), where ϕ is a projection-free conjunctive query and k, j are natural
numbers (represented in binary).

We say that a database A satisfies a set of modulo constraints Γ (we write
A |= Γ) if and only if for each (ϕ, k, j) ∈ Γ there exists α ∈ N such that:

#(ϕ,A) = k + (α ∗ j)

where the meaning of #(ϕ,A) is as defined in Section 2.
We say that Γ is satisfiable if there is a database A such that A |= Γ .

Of course, we assume that 0 ∈ N, so in particular Γ can contain some triples
of the form (ϕ, k, 0). For parsimony, we will often omit the word modulo when
referring to modulo constraints.

Now, we formulate the intermediate result, which is the main technical part
of the proof of Theorem 5.

Theorem 7 (Intermediate Result). Let Γ be a set of constraints with projection-
free conjunctive queries. The problem whether Γ is satisfiable is in NEXPTIME.

In Sections 4-6 we prove the intermediate result, and in Section 7 we show
how it implies the main result.

4 Outline of the Proof of the Intermediate Result

We use the following notation. Let Γ be a set of modulo constraints, then:
ΓCONST is the set of constant constraints: ΓCONST = {(ϕ, k, j) ∈ Γ | j = 0},
and ΓPROP is the set of proper constraints: ΓPROP = {(ϕ, k, j) ∈ Γ | j > 0}.
Of course, we have: Γ = ΓCONST ∪ ΓPROP. The maximal number appearing in
a set of modulo constraints Γ is denoted by maxk,j(Γ) and the least common
multiple of all numbers j in Γ is denoted by lcmj(Γ). By maxϕ(Γ) we denote the
maximal size of a formula in a constraint from Γ and by maxCϕ

(Γ) we denote
the maximal size of a canonical structure for a formula in a constraint in Γ .

The crux to Theorem 7 lies in the following small model property, which we
prove in Sections 5 and 6.

Proposition 8 (Small model property for modulo constraints). If a set
Γ of modulo constraints is satisfiable then there exists a database B of size at
most exponential in Γ such that B |= Γ .

Note that we do not fix the vocabulary used in the constraints in Γ . That
is, the vocabulary is implicitly given by the constants and relations used in the
formulas in the constraints in Γ .

Observe that Theorem 7 indeed follows from Proposition 8 since now it suf-
fices to

7

1. guess a database B of size at most exponential in Γ and

2. check that this database satisfies the constraints.

The latter boils down to evaluating all of the projection-free conjunctive queries
in Γ on B, which can certainly be done in time exponential in Γ and polynomial
in B (resulting in time exponential in Γ) [1].

In the rest of the proof we fix a satisfiable set of modulo constraints Γ =
ΓCONST ∪ ΓPROP and a database A satisfying Γ . To prove Proposition 8, we
show that given Γ and A there exists a set of constraints Γ ′ of size exponential
in Γ such that

1. A |= Γ ′;

2. every B that satisfies Γ ′ also satisfies Γ ;

3. from Γ ′ we can construct a B of size exponential in Γ that satisfies Γ ′.

Actually, Γ ′ is not a set of constraints as defined, but a set of extended constraints
– constraints (ϕ, k, j) such that ϕ can also mention inequalities x 6= c and x 6= y.

We will define Γ ′ as ΓCONST ∪Γ ′
PROP, where Γ ′

PROP is going to be a new set
of proper constraints in some normal form. In order to understand why we need
this normal form, it is helpful to have in mind the general idea of the construction
of a database that satisfies Γ ′. First, we are going to fix some small structure
ACONST. All constraints from ΓCONST will be satisfied in ACONST, and ACONST

will interpret all constants appearing in the formulas in Γ 3. Then, we will satisfy
the constraints in Γ ′

PROP one by one, by extending ACONST with some number of
isomorphic copies of the canonical structures for the formulas in the constraints.
Namely, we take the union of the structures in which the constants from the
canonical structures are identified with the respective elements of dom(ACONST)
and all elements corresponding to the variables in each copy of a canonical
structure are fresh. (See Definition 10 and Example 12). However, if one does
this naively, it can happen that satisfying a constraint causes other constraints
which already had been satisfied to fail (see examples 12 and 30). Fortunately,
if the constraints in Γ ′

PROP are in the normal form, we can process them in an
order that prevents the above problem.

The proof is organized as follows. In Section 5 we show that for a set ΓPROP of
proper constraints, there exists a set Γ ′

PROP which is of at most exponential size
w.r.t. the size of ΓPROP, and such that Γ ′

PROP∪ΓCONST is satisfiable if and only
if ΓPROP ∪ ΓCONST is satisfiable. Then, in Section 6 we show that for Γ ′

PROP in
the normal form, if ΓCONST ∪Γ ′

PROP is satisfiable then it has a model of at most
exponential size w.r.t. the size of the original input instance ΓCONST ∪ ΓPROP.

3 That is, for each constant symbol c that is mentioned in a formula in a constraint
in Γ , there is an element cACONST in dom(ACONST).

8

5 From ΓPROP to its Normal Form

Step 1.

In the following lemma we fix an exponential substructure ACONST of A that
satisfies ΓCONST and such that all constants appearing in Γ are interpreted in
ACONST.

Lemma 9. Let Γ = ΓCONST ∪ ΓPROP be a set of modulo constraints and let a
database A satisfy Γ . Then there exists a substructure ACONST of A that satisfies
ΓCONST and such that all constant symbols from the formulas in the constraints
in Γ are interpreted in ACONST. The size of ACONST is at most exponential
w.r.t. the size of Γ .

Proof. Consider the database A and the set Γ = ΓCONST∪ΓPROP. Since A |= Γ
then, obviously, we have A |= ΓCONST. Let ACONST be the substructure of A
induced by the elements from dom(A) that are a constant in Γ or are in some
tuple satisfying a formula in a constraint from ΓCONST. Clearly, ACONST |=
ΓCONST.

It remains to calculate the upper bound on the size of ACONST. Let s be
the size of Γ . For each constraint (ϕ, k, 0) ∈ ΓCONST there are exactly k tuples
satisfying ϕ. Hence, in the worst case, the number of elements of dom(A) for
these tuples is k times the arity of ϕ. Thus, the size of dom(ACONST) is bounded
from above by the sum of the number of constants in Γ (which is O(s)) and the
product of:

– the number of constraints in ΓCONST: O(s);
– the maximal arity of a formula in ΓCONST: O(s);
– the value of the maximal number k from ΓCONST: O(2s) – recall that the

numbers in Γ are in binary.

Hence, the size of dom(ACONST) is O(s2 2s).
The size of each relation in ACONST is bounded from above by the number

of n-tuples of elements in dom(ACONST), where n = O(s) is the arity of the
relation.4 Thus it is O((s2 2s)s)). Finally, since the number of relations is O(s),

we obtain the upper bound on the size of ACONST: O(s s2s 2(s2)). ⊓⊔

The database ACONST will be the starting point in the construction of a
small database B that satisfies Γ . Namely, ACONST will be a substructure of all
databases which we are going to consider in the rest of the proof. For simplic-
ity we treat all the elements of dom(ACONST) as constants (i.e. we extend the
vocabulary provided by Γ with a set of constants dom(ACONST), interpreted as
themselves). A normal form of a set of constraints, which we define next, will
also depend on ACONST.

Before we move to Step 2, we need to introduce some notations and defini-
tions.

4 Recall that we assume set semantics.

9

Definition 10. Let A be a structure over a vocabulary S and let A′ be a struc-
ture over a vocabulary S′ such that

1. S = S′ ∪ SC , where SC may contain constant symbols only;
2. for every constant symbol c in S′, cA

′

is an element of dom(A);
3. apart from the set {cA

′

1 , . . . , cA
′

s } consisting of all interpretations of constant
symbols in S′, dom(A′) is disjoint with dom(A).

We define the union A⊎A′ as the following structure over the vocabulary S. The
domain of A ⊎ A′ is defined as dom(A) ∪ dom(A′). For each constant symbol c
in S we define cA⊎A′

as cA. For each relational symbol R in S we define RA⊎A′

as RA ∪RA′

.
If we say that we extend a database A with a copy of A′ then we mean that

we construct a new database A⊎A′′, where A′′ is an isomorphic copy of A′.

Recall that by Cψ we mean the canonical structure for ψ.

Definition 11. We say that a total order < on a set of proper constraints Φ is
correct w.r.t. ACONST if for each (ϕ, k, j), (ϕ′, k′, j′) ∈ Φ such that (ϕ, k, j) <
(ϕ′, k′, j′) and for each tuple e that contains at least one element5 from dom(Cϕ′)\
dom(ACONST), it does not hold ACONST ⊎ Cϕ′ |= ϕ(e).

Example 12. Consider the set of constraints Γ = { t0 = (R(c, c)∧P (c), 1, 0), t1 =
(ϕ1, 2, 2), t2 = (ϕ2, 1, 2) }, where ϕ1 = R(c, x) ∧ P (x) and ϕ2 = R(c, x). Obvi-
ously, ΓCONST = {t0} and ΓPROP = {t1, t2}. Notice that the database ACONST =
{R(c, c), P (c)} satisfies ΓCONST. First, we would like to satisfy the constraint
t1. At the moment, there is a single tuple (c) in ACONST that satisfies ϕ1.
Thus, we extend ACONST with a copy of Cϕ1

. This way we obtain the struc-
ture A1 = ACONST ∪ {R(c, e1), P (e1)}. Clearly, A1 |= t1 since there are exactly
2 tuples satisfying ϕ1: (c) and (e1). Notice that these 2 tuples satisfy ϕ2 as well.
Hence, t2 is not satisfied in A1. Next, we extend A1 with a copy of Cϕ2

, obtain-
ing the database A2 = A1 ∪ {R(c, e2)}. Now, there are 3 tuples satisfying ϕ2:
(c), (e1), (e2). Clearly, A2 satisfies Γ . Finally notice that the ordering t1 < t2
that we used is correct w.r.t. ACONST. This is since for all tuples e that contain
at least one element not from dom(ACONST) we have ACONST ⊎ Cϕ2

6|= ϕ1(e).
Now, notice that if we chose to satisfy t2 first and only then to satisfy t1, we

would not succeed —this would be since each time we extend a database with
a copy of Cϕ1

, we also cause the increase of the number of tuples satisfying ϕ2.
This is since the ordering t2 < t1 is not correct w.r.t. ACONST.

Reduced sets of constraints.

Throughout the construction of Γ ′
PROP we will use the following observation.

Definition 13. We call a set of proper (extended) constraints reduced if the set
does not contain two distinct constraints (ϕ, k, j) and (ϕ′, k′, j′) with ϕ and ϕ′

equivalent.

5 We would like to ignore tuples e such that ACONST |= ϕ(e).

10

Lemma 14. For every satisfiable set of proper (extended) constraints Φ there
exists an equivalent reduced set ∆ of proper constraints (in the sense that for
every database A′ it holds A |= Φ if and only if A′ |= ∆). Moreover:

1. |∆| ≤ |Φ|;
2. maxϕ(∆) ≤ maxϕ(Φ);

3. maxk,j(∆) ≤ maxk,j(Φ) + lcmj(Φ); and

4. lcmj(∆) = lcmj(Φ).

Proof. If Φ is already reduced then we put ∆ := Φ. Otherwise we define ∆ in
the following way.

We call a subset ΦEQ of Φ reducible if all formulas in the constraints in ΦEQ

are equivalent and |ΦEQ| ≥ 2.

Consider some reducible set ΦEQ. We will construct a single constraint t(ΦEQ)
such that for every database A′ it holds A′ |= ΦEQ if and only if A′ |= {t(ΦEQ)}.

Let ΦEQ = {(ϕi, ki, ji) | i = 1, . . . , n }. Since the formulas ϕi are equivalent
we can use ϕ := ϕ1 as the representant of the equivalence class.

Notice that the constraints in ΦEQ form the following set of congruences,
where x is the number of tuples satisfying ϕ in a satisfying database:

x ≡ k1 (mod j1)
. . .
x ≡ kn (mod jn)

with the additional requirement that x ≥ max(k1, . . . , kn) – this requirement is
necessary because in Definition 6 we do not assume that ki ≤ ji.

Since Φ is satisfiable such a number x exists. Further, using an easy gener-
alization of Chinese Remainder Theorem it is possible to show that x is unique
modulo the least common multiple of the numbers j1, . . . , jn (recall that ji > 0
in proper constraints). Hence, we define the constraint t(ΦEQ) as (ϕ, k, j) where

– j is lcm(j1, . . . , jn);

– k is the smallest number which is at least max(k1, . . . , kn), such that k ≡ x
(mod j).

Clearly, k ≤ max(k1, . . . , kn) + j ≤ maxk,j(Φ) + lcmj(Φ). Moreover for every A′

it holds A′ |= ΦEQ if and only if A′ |= {t(ΦEQ)}. Hence, for every A′ it holds
A′ |= Φ if and only if A′ |= Φ \ ΦEQ ∪ {t(ΦEQ)}.

Now, consider the class {Φ1
EQ, Φ

2
EQ, . . . , Φ

h
EQ} of all maximal, reducible sub-

sets of Φ. Then we define ∆ as

Φ \
⋃

i=1,2,...,h

ΦiEQ

 ∪
⋃

i=1,2,...,h

{t(ΦiEQ)}.

It is easy to see that conditions (1)-(4) from Lemma 14 hold. ⊓⊔

11

Step 2.

We start with the following definition.

Definition 15. We say that a set of constraints Φ is in the 1st normal form
w.r.t. ACONST if all formulas in the proper constraints of Φ are of the form ϕ(x)∧
NotConstants(x), where ϕ(x) is a projection-free conjunctive query with free
variables x and the formula NotConstants(x) is the conjunction of inequalities
of the form x 6= c for each variable x of ϕ and each c ∈ dom(ACONST).

In Step 2 we transform the set of constraints ΓPROP into a set Γ1 of con-
straints, which is small enough, is in the 1st normal form w.r.t. ACONST, and is
satisfiable if and only if ΓPROP is. In order to do so we produce separate con-
straints for each (possibly partial) substitution of variables of ϕ with elements
of dom(ACONST). This way we fix which variables are substituted with elements
from dom(ACONST). Additionally, a formula NotConstants ensures that each
such substitution is final i.e. it forbids substituting constants for the remaining
variables in the resulting constraints. Recall the basic intuition of the construc-
tion – we want to satisfy each proper constraint by extending ACONST with
copies of the canonical structure for the formula in the constraint. After Step 2
it will be clear how to do it – the constants (including the variables substituted
in this step with elements from dom(ACONST)) will be identified with respective
elements of dom(ACONST) and for all variables we will substitute fresh elements.

Lemma 16. Let Γ = ΓCONST ∪ ΓPROP be a set of constraints, let A satisfy Γ
and let ACONST, a substructure of A, satisfy ΓCONST. There exists a reduced set
of extended constraints Γ1 in the 1st normal form w.r.t. ACONST such that

1. A |= Γ1;
2. for every A′ which is a superstructure of ACONST such that A′ |= ΓCONST

and A′ |= Γ1 we also have A′ |= Γ ;
3. (a) |Γ1| ≤ |Γ | ∗ |dom(ACONST)|2maxCϕ (Γ);

(b) maxϕ(Γ1) ≤ maxϕ(Γ) + O(maxCϕ
(Γ) ∗ |dom(ACONST)|);

(c) maxCϕ
(Γ1) ≤ maxCϕ

(Γ);
(d) maxk,j(Γ1) ≤ 2maxk,j(Γ) + lcmj(Γ);
(e) lcmj(Γ1) = lcmj(Γ).

Notice that Lemma 16 shares its structure with Lemma 26 and Lemma 32: claims
1 and 2 assert that the new set of constraints is equisatisfiable with the old one,
at least when we restrict ourselves to superstructures of ACONST. Claim 3 asserts
that the new set of constraints is small: not only it is of exponential size but
also its coefficients are small enough to make the next step of the construction
possible.

Let us also mention that the proof of Lemma 16 (and also of lemmas 26 and
32) is existential not constructive – we need to know A to be able to perform it.

Proof. Consider a constraint t = (ϕ, k, j) in ΓPROP. We define Γt as a set of new
constraints of the form (ψθ, kθ, j), for each V ⊆ Vars(ϕ) and for each θ : V →
dom(ACONST), where:

ψθ = ϕ[θ] ∧ NotConstants(Vars(ϕ[θ])).

12

The inequalities are introduced to ensure that for any database A such that
A |= Γt, in any tuple satisfying ϕ[θ] no variable from Vars(ϕ[θ]) is substituted
with an element from dom(ACONST).

Then we define for each θ the number kθ as

max {x ∈ N | x ≤ k + j ∧ x ≤ #(ψθ,A) ∧ x ≡ #(ψθ,A) (mod j)}.

Notice that we cannot simply define kθ as #(ψθ,A) mod j since in the proof of
claim 2 of Lemma 16 we need that the total sum

∑

θ kθ is at least k.
Let Γ1 be the reduced set of constraints equivalent to

⋃

t∈ΓPROP
Γt. Clearly,

we can use Lemma 14 to prove that Γ1 exists.

Example 17. Let t = (ϕ, 1, 2) with ϕ = R(c, x)∧R(x, y), let ACONST = {R(c, d),
R(c, c)} and let A = ACONST∪{R(d, e)}. Notice that #(ϕ,A) = 3 (the satisfying
tuples are (d, e), (c, d), (c, c)). In the following table we show for each substitution
θ the formula ψθ and the number kθ.

θ ψθ kθ
∅ R(c, x) ∧R(x, y) ∧ x 6= c ∧ x 6= d ∧ y 6= c ∧ y 6= d 0

{x→ c} R(c, c) ∧R(c, y) ∧ y 6= c ∧ y 6= d 0
{x→ d} R(c, d) ∧R(d, y) ∧ y 6= c ∧ y 6= d 1
{y → c} R(c, x) ∧R(x, c) ∧ x 6= c ∧ x 6= d 0
{y → d} R(c, x) ∧R(x, d) ∧ x 6= c ∧ x 6= d 0

{x→ c, y → c} R(c, c) 1
{x→ c, y → d} R(c, c) ∧R(c, d) 1
{x→ d, y → c} R(c, d) ∧R(d, c) 0
{x→ d, y → d} R(c, d) ∧R(d, d) 0

Notice that some of the formulas contain ground atoms only (i.e. atoms without
variables). Therefore, we know whether they are true or false in any superstruc-
ture of ACONST. Notice also that for true sentences we have kθ = 1 and for false
sentences we have kθ = 0. In general, it is also possible that some formulas in
Γ1 are unsatisfiable because of the ground atoms. Then kθ would be 0 for them.

Now, we will prove the following observations.

Observation 18. Consider a database B which is a superstructure of ACONST

and a constraint (ϕ, k, j) ∈ ΓPROP. Then
∑

θ #(ψθ ,B) = #(ϕ,B).

Proof. Let V = Vars(ϕ). Let Φ be the set of all tuples satisfying ϕ in B and let
Ψ be the set of all pairs of the form (θ,u). where θ is a substitution from a set
X ⊆ V to dom(ACONST), and u is a tuple of elements of dom(B)\dom(ACONST)
that satisfies ψθ in B. We define a function f : Ψ → Φ. Consider a pair (θ,u) ∈ Ψ .
Let h : V \ X → u be the substitution witnessing that B |= ψθ(u). Then the
union θ ∪ h : V → dom(B) is a substitution witnessing that for some tuple e we
have B |= ϕ(e). We define f on (θ,u) as the tuple e. Now, it is easy to prove
that f is a bijection between Ψ and Φ. ⊓⊔

13

Observation 19. Consider a constraint (ϕ, k, j) ∈ ΓPROP. There exists a num-
ber α ∈ N such that

∑

θ kθ = k + α ∗ j.

Proof. Since A |= (ϕ, k, j) we have #(ϕ,A) = k + α′ ∗ j, for some α′ ∈ N.
Hence from Observation 18 we have

∑

θ #(ψθ,A) = k + α′ ∗ j. Notice that the
definition of kθ guarantees that (1) kθ ≡ #(ψθ,A) (mod j) and (2) if kθ < k
then kθ = #(ψθ ,A) (this is since the numbers between k and k + j contain
all possible remainders modulo j). Since (1)

∑

θ kθ ≡
∑

θ #(ψθ ,A) (mod j) and
thus

∑

θ kθ ≡ k + α′ ∗ j (mod j). Moreover since (2)
∑

θ kθ ≥ k. Finally, we
conclude that there exists some α ∈ N such that

∑

θ kθ = k + α ∗ j. ⊓⊔

Now we are ready to prove the claims 1—3 of Lemma 16.

1. Consider a constraint (ψθ, kθ, j) ∈
⋃

t∈ΓPROP
Γt. Notice that #(ψθ,A) =

kθ+α∗j, for some α ∈ N. This is since from the definition of kθ we have that
kθ ≤ #(ψθ,A) and that kθ ≡ #(ψθ,A) (mod j). Hence A |= {(ψθ, kθ, j)}.
Thus we have A |=

⋃

t∈ΓPROP
Γt and then A |= Γ1 because

⋃

t∈ΓPROP
Γt and

Γ1 are equivalent.
2. It suffices to show that A′ |= ΓPROP. Let t = (ϕ, k, j) be some constraint

in ΓPROP. Since A′ |= Γ1 and Γ1 and
⋃

t∈ΓPROP
Γt are equivalent, we have

that A′ |= Γt. Thus ∀θ A′ |= (ψθ, kθ, j). Hence, ∀θ #(ψθ,A′) = kθ + αθ ∗ j,
for some αθ ∈ N. From Observation 18, #(ϕ,A′) =

∑

θ #(ψθ,A′). Hence
#(ϕ,A′) =

∑

θ(kθ + αθ ∗ j) and thus #(ϕ,A′) =
∑

θ kθ + α′ ∗ j, for some
α′ ∈ N. Now, using Observation 19, we obtain that #(ϕ,A′) = k+α∗j+α′∗j,
for some α, α′ ∈ N and thus A′ |= (ϕ, k, j).

3. (a) This is since for each constraint (ϕ, k, j) ∈ ΓPROP the number of partial
substitutions θ : Vars(ϕ) → dom(ACONST) is bounded from above by
2|Vars(ϕ)| ∗ |dom(ACONST)||Vars(ϕ)| and thus by |dom(ACONST)|2|Vars(ϕ)|

and |Vars(ϕ)| ≤ maxCϕ
(Γ).

(b) Each formula in a proper constraint in Γ1 has at most |dom(ACONST)| ∗
maxCϕ

(Γ) inequalities in the NotConstants subformula.
(c) The NotConstants subformula is ignored in the construction of a canon-

ical structure.
(d) Let t = (ϕ, k, j) be a constraint in ΓPROP and let (ψθ, kθ, j) be a con-

straint in Γt. From the definition of kθ we have that kθ ≤ k + j and
thus maxk,j(

⋃

t∈ΓPROP
Γt) ≤ 2maxk,j(Γ). From Lemma 14 we have that

maxk,j(Γ1) ≤ 2maxk,j(Γ) + lcmj(Γ).
(e) This follows directly from the definition of Γ1 and from Lemma 14.

This concludes the proof of Lemma 16. ⊓⊔

Step 3.

In this step we define the 2nd normal form w.r.t. ACONST of a set of constraints.
Then we show the existence of a reduced set of constraints Γ2 which is equivalent
to Γ1, is in the 2nd normal form w.r.t. ACONST and whose size is affordable.

We will prove later that each formula in a constraint in the 2nd normal form
has the following property.

14

sx1 s x2

sx3 s x5

s x4
�

�
��

Fig. 2. The graph for the canonical structure from Example 24.

Definition 20. We say that a formula ϕ is controllable if for all databases A1

and A2 and for all tuples e such that A1 ⊎ A2 |= ϕ(e), e is contained either in
dom(A1) or in dom(A2).

Recall that the general idea of the construction is to satisfy in each step
some constraint of the form (ψ, k, j), by extending some candidate database A
with isomorphic copies of Cψ. Notice that if a formula ϕ is controllable then
#(ϕ,A ⊎ Cψ) = #(ϕ,A) + #(ϕ, Cψ). Thus the number of new tuples satisfying
ϕ in A ⊎ Cψ does not depend on A.

The motivation why we need Step 3 can be best explained using the following
example.

Example 21. Let ϕ = R1(c, x1) ∧ R2(c, x2) ∧ NotConstants({x1, x2}). Then ϕ
turns out not to be controllable. Consider, for example, the structure C =
{R1(c, e)}. Then C ⊎ Cϕ = {R1(c, e), R1(c, x1), R2(c, x2)} and there is a tuple
(e, x2) such that C ⊎ Cϕ |= ϕ(e, x2). Clearly, e ∈ dom(C) and x2 6∈ dom(C).
Intuitively, the source of the problem is that x1 and x2 are in some sense discon-
nected in ϕ (even though they are connected by the constant c). We formalize
this intuition below.

Definition 22. Let B be a database such that all constants of B are interpreted
in ACONST. Define GRAPH(B) to be a graph whose vertices are the elements of
dom(B)\dom(ACONST). There is an edge between vertices e1, e2 of GRAPH(B)
if there is a tuple e in some relation R in B such that e contains both e1 and e2.

Clearly, the set of vertices of GRAPH(Cϕ), the graph for the canonical struc-
ture for ϕ, is exactly the set of variables of ϕ.

Definition 23. A connected subformula of ϕ is a formula ϕD(xD) defined as
∧

R(xR)∈DR(xR)∧NotConstants(xD), where D is a maximal set of non-ground

atoms (i.e. atoms with variables), such that GRAPH(CϕD
) is a connected com-

ponent of GRAPH(Cϕ).

Notice that a formula ϕ is a conjunction of its connected subformulas and its
ground atoms. (i.e. atoms without variables).

Example 24. Consider the following formula ϕ(x1, . . . , x5)

R1(x1, x2) ∧R2(x2, x3, c1, x5, c2) ∧R1(c1, c3) ∧R1(c3, c3)

15

∧R1(x4, c1) ∧R1(c2, x4) ∧ NotConstants({x1, . . . , x5}),

where c1, c2, c3 are in dom(ACONST). Vertices of GRAPH(Cϕ) are {x1, . . . , x5}
(see Figure 2), and edges of GRAPH(Cϕ) are {x1, x2}, {x2, x3}, {x2, x5} and
{x3, x5}. Clearly, GRAPH(Cϕ) has two connected components, namely {x4} and
{x1, x2, x3, x5}.

There are two connected subformulas of ϕ:

R1(x1, x2) ∧R2(x2, x3, c1, x5, c2) ∧ NotConstants({x1, x2, x3, x5})

and

R1(x4, c1) ∧R1(c2, x4) ∧ NotConstants({x4}).

The ground atoms of ϕ are R1(c1, c3) and R1(c3, c3).

Definition 25. We say that a set of constraints Φ is in the 2nd normal form
w.r.t. ACONST if Φ is in the 1st normal form w.r.t. ACONST and all formulas in
the constraints in ΦPROP

– consist of exactly one connected subformula; and
– contain no ground atoms.

Lemma 26. Let Γ1 be a set of constraints in the 1st normal form w.r.t. ACONST

and let A satisfy Γ1. There exists a reduced set of extended constraints Γ2 in the
2nd normal form w.r.t. ACONST such that

1. A |= Γ2;

2. for every A′ which is a superstructure of ACONST such that A′ |= ΓCONST

and A′ |= Γ2 we also have A′ |= Γ1;

3. (a) |Γ2| ≤ |Γ1| ∗ maxCϕ
(Γ1);

(b) maxϕ(Γ2) ≤ maxϕ(Γ1);

(c) maxCϕ
(Γ2) ≤ maxCϕ

(Γ1);

(d) maxk,j(Γ2) ≤ 2maxk,j(Γ1) + lcmj(Γ1);
(e) lcmj(Γ2) ≤ lcmj(Γ1).

Proof. We construct separate constraints for the connected subformulas of the
formulas in the constraints in Γ1. We also forget about the ground atoms in the
formulas in the constraints. The reason is that the ground atoms are already de-
termined to be either true or false in ACONST and we will not add any new tuples
consisting exclusively of constants during the construction of B ⊇ ACONST. For
the same reason we forget about the formulas with ground atoms only.

Consider a constraint t = (ϕ, k, j) in Γ1. Let ϕ1, . . . , ϕn be the connected
subformulas of ϕ and let ψ1, . . . , ψl be the ground atoms of ϕ. Let mh ∈ {0, 1}
be 1 if ψh holds in ACONST and 0 otherwise (for h = 1, . . . , l). Notice that
the sets of variables in formulas ϕ1, . . . , ϕn partition the set of variables in ϕ.
Thus the number of tuples satisfying ϕ is the product of the numbers of tuples
satisfying ϕi, (for i = 1 . . . , n), times the product of mh, for h = 1, . . . , l.

16

Since Γ1 is satisfiable it is impossible that k > 0 and some mh = 0. For the
same reason it is also impossible that ϕ contains ground atoms only and k > 1. 6

If k = 0 and some mh = 0 then t is satisfied in every superstructure of ACONST

so we put Γt = ∅. Similarly, if ϕ contains true ground atoms only and k = 1
then Γt = ∅. If k ≥ 0 and for all h = 1, . . . , l the number mh = 1, then we define
Γt as {(ϕi, ki, j) | i ∈ {1, . . . , n}}, where for each i = 1, . . . , n the number ki is
defined as

max {x ∈ N | x ≤ k + j ∧ x ≤ #(ϕi,A) ∧ x ≡ #(ϕi,A) (mod j)}.

Then we define Γ2 as the reduced set equivalent to
⋃

t∈Γ1
Γt.

We can prove the following observation with similar arguments as in the
proof of Observation 19.

Observation 27. Consider a constraint (ϕ, k, j) ∈ Γ1. There exists a number
α ∈ N such that

∏

i ki = k + α ∗ j.

We prove the claims 1—3 of Lemma 26.

1. Consider a constraint (ϕi, ki, j) ∈
⋃

t∈Γ1
Γt. Notice that #(ϕi,A) = ki+α∗j,

for some α ∈ N. This is since, from the definition of ki, we have ki ≤ #(ϕi,A)
and ki ≡ #(ϕi,A) (mod j). Hence A |= {(ϕi, ki, j)}.
Thus we have A |=

⋃

t∈Γ1
Γt and then A |= Γ2 because

⋃

t∈Γ1
Γt and Γ2 are

equivalent.
2. We have to show that A′ |= Γ1. Let t = (ϕ, k, j) be some constraint in Γ1.

Since A′ |= Γ2 and Γ2 and
⋃

t∈Γ1
Γt are equivalent, we have that A′ |= Γt.

Thus, two cases are possible: either (1) Γt = ∅ or (2) for each constraint
(ϕi, ki, j) ∈ Γt, A

′ |= (ϕi, ki, j). In the case (1) A′ |= {t}, since we put
Γt = ∅ only if ϕ was a false sentence in ACONST and k = 0 or ϕ was a true
sentence in ACONST and k = 1. In the case (2) we have, for all i = 1, . . . , n,
that #(ϕi,A′) = ki + αi ∗ j, for some αi ∈ N. During the construction we
noted that #(ϕ,A′) =

∏

i#(ϕi,A′). Hence, #(ϕ,A′) =
∏

i(ki + αi ∗ j) and
thus #(ϕ,A′) =

∏

i ki +α′ ∗ j, for some α′ ∈ N. Now, using Observation 27,
we obtain that #(ϕ,A′) = k + α ∗ j + α′ ∗ j, for some α, α′ ∈ N and thus
A′ |= (ϕ, k, j).

3. (a) The number of connected subformulas of a formula ϕ is bounded from
above by the size of the canonical structure for ϕ.

(b) We have in the constraints in Γ2 the subformulas of the formulas in the
constraints in Γ1 only.

(c) Same argument as above.
(d) Let t = (ϕ, k, j) be a constraint in Γ1 and let (ϕi, ki, j) be a constraint

in Γt. From the definition of ki we have that ki ≤ k + j and thus
maxk,j(

⋃

t∈Γ1
Γt) ≤ 2maxk,j(Γ1). From Lemma 14 we have maxk,j(Γ2) ≤

2maxk,j(Γ1) + lcmj(Γ1).
(e) This follows directly from the definition of Γ2 and from Lemma 14.

6 A formula consisting exclusively of ground atoms can be satisfied by the empty tuple
only.

17

⊓⊔

We prove now that all formulas in constraints from a set in the 2nd normal
form are controllable. In the following example we show the intuition behind the
proof.

Example 28. Let ϕ = R(x, y)∧R0(x, c, z)∧R(z, w)∧NotConstants({x, y, z, w})
and let B and C be some databases such that all constants in them are interpreted
in dom(ACONST). Thus, speaking informally, B and C may be connected in B⊎C
only through some elements of dom(ACONST). Clearly, ϕ consists of a single
connected subformula. Let (ex, ey, ez, ew) be some tuple satisfying ϕ in B ⊎ C.
Because of the NotConstants subformula, none of the elements from the tuple
is in dom(ACONST) and thus each of them is either in dom(B) or in dom(C).
Notice also that RB⊎C must contain (ex, ey) and (ez, ew), and RB⊎C

0 must contain
(ex, c, ez). We show that if ex ∈ dom(B) then also each of ey, ez, ew is in dom(B).
Indeed, since ex ∈ dom(B) we have that (ex, ey) ∈ RB and (ex, c, ez) ∈ RB

0 . This
is since from the definition of ⊎ no relation of B ⊎ C can contain a tuple with
an element e1 from dom(B) and an element e2 from C such that e1 and e2 are
not constants. Next, since (ex, c, ez) ∈ RB

0 then (ez , ew) ∈ RB. Analogously, if
ex ∈ dom(C) then also each of ey, ez, ew is in dom(C).

Lemma 29. If (ϕ, k, j) is in a set of constraints in the 2nd normal form then
ϕ is controllable.

Proof. Let B and C be structures such that for some tuple e we have B⊎C |= ϕ(e).
Thus there is a homomorphism h : Cϕ → B ⊎ C witnessing it. Clearly, h is an
identity on the constants and maps the variables of ϕ to e. Let us assume towards
the contradiction that e contains a ∈ dom(B) and b 6∈ dom(B). Obviously,
neither a nor b are constants since ϕ contains the NotConstants subformula.
The 2nd normal form guarantees that GRAPH(Cϕ) consists of a single connected
component. Now, consider some elements x and y in dom(Cϕ) such that a = h(x)
and b = h(y). Clearly, x and y are connected in GRAPH(Cϕ) by some path σ.
Notice that each edge in σ corresponds to a tuple in a relation R of Cϕ. Each such
tuple is mapped by the homomorphism h to a tuple in R in B ⊎ C. Moreover,
since ϕ contains the NotConstants subformula, h does not map the elements
corresponding to the variables of ϕ to constants. Hence, there is a corresponding
path σ′ in GRAPH(B ⊎ C) connecting a and b. In particular, there must be an
edge in σ′ connecting an element a′ ∈ dom(B) and an element b′ 6∈ dom(B)
such that a′, b′ are not constants. Hence, there is a tuple in some relation of
B ⊎ C containing a′ and b′. However, it follows directly from the definition of ⊎
(Definition 10) that no relation of B ⊎ C can contain such a tuple. ⊓⊔

Step 4.

Finally, in this step we introduce the normal form w.r.t. ACONST of a set of a
constraints and then we construct a set of constraints Γ3 in this normal form.
The following example explains the motivation for Step 4.

18

Example 30. Let ϕ1 = R(x1, x2) ∧ R(x1, x3) and ϕ2 = R(x1, x2). There are no
constants in this example and hence ϕ1 and ϕ2 do not have the NotConstants
subformulas. Let t1 be a constraint containing the formula ϕ1 and t2 a constraint
containing the formula ϕ2. There is no ordering of t1 and t2 that is correct w.r.t
ACONST. This is since Cϕ1

|= ϕ2(x1, x2) and Cϕ1
|= ϕ2(x1, x3) and at the same

time Cϕ2
|= ϕ1(x1, x2, x2).

Definition 31. We say that a set of constraints Φ is in the normal form w.r.t.
ACONST if Φ is in the 2nd normal form w.r.t. ACONST and all formulas in the
constraints in ΦPROP are of the form ϕ(x)∧NotConstants(x)∧ INEQ(x), where
the formula INEQ(x) is the conjunction of inequalities of the form x 6= y for
each pair of distinct variables x and y of x.

Lemma 32. Let Γ2 be a set of constraints in the 2nd normal form w.r.t. ACONST

and let A satisfy Γ2. There exists a reduced set of extended constraints Γ3 in the
normal form w.r.t. ACONST such that

1. A |= Γ3;
2. for every A′ which is a superstructure of ACONST such that A′ |= ΓCONST

and A′ |= Γ3 we also have A′ |= Γ2;

3. (a) |Γ3| ≤ |Γ2| ∗ 2(maxCϕ (Γ2)2);
(b) maxϕ(Γ3) ≤ maxϕ(Γ2) + O(maxCϕ

(Γ2)
2);

(c) maxCϕ
(Γ3) ≤ maxCϕ

(Γ2);
(d) maxk,j(Γ3) ≤ 2maxk,j(Γ2) + lcmj(Γ2);
(e) lcmj(Γ3) ≤ lcmj(Γ2).

Proof. Consider a database A, a formula ϕ(x) from Γ2 and a tuple a such
that A |= ϕ(a). A substitution of elements a for variables x may map several
variables from x to a single element a in a. During Step 4 we replace each
constraint (ϕ, k, j) in Γ2 with separate constraints for all possible variants of Cϕ
which can be obtained by identification of some variables in Vars(ϕ). We also
disallow any further identification of variables in the resulting constraints Γ3. In
other words: If A |= ϕ(a) then there is a corresponding homomorphism from Cϕ
to A. The goal of this step is to obtain a new set Γ3 which can replace Γ2, such
that all such homomorphisms have to be injective.

Consider a constraint (ϕ, k, j) in Γ2. Let π = {S1, . . . , Sm} be a parti-
tion of Vars(ϕ). We define a substitution θπ : Vars(ϕ) → {y1, . . . , ym} as fol-
lows. For each x ∈ Si we define θπ(x) to be yi. Then we define ψθπ

to be
ϕθπ

∧ NotConstants(Vars(ϕθπ
)) ∧ INEQ(Vars(ϕθπ

)), where INEQ(Vars(ϕθπ
)) is

the conjunction of inequalities of the form x 6= y, for each pair of distinct vari-
ables x, y ∈ Vars(ϕθπ

). We introduce the inequalities to ensure that all variables
which are not identified during this step have to be substituted with distinct
elements of a database.

For each t ∈ Γ2, where t = (ϕ, k, j), we define Γt to be the set of constraints of
the form (ψθπ

, kθπ
, j) for each partition π of Vars(ϕ). Similarly as in the previous

steps we define the numbers kθπ
as

max {x ∈ N | x ≤ k + j ∧ x ≤ #(ψθπ
,A) ∧ x ≡ #(ψθπ

,A) (mod j)}.

19

Finally, we define Γ3 as the reduced set equivalent to
⋃

t∈Γ2
Γt.

The proof of claims 1 and 2 is very similar to the proofs of the respective
claims of lemmas 16 and 26. In particular, we use the facts that for each super-
structure B of ACONST we have

∑

π #(ψθπ
,B) = #(ϕ,B) and

∑

π kθπ
= k+α∗j.

Now, we prove claim 3.

(a) Notice that the number of partitions of a set of variables of a formula in Γ2

is at most 2(s2), where s is the number of variables in the formula. Clearly,
s ≤ maxCϕ

(Γ2). Therefore, in the worst case, for each t in Γ2 we output Γt

of a size bounded by 2(maxCϕ (Γ2)2). Then the claim follows from Lemma 14.
(b) The number of inequalities in the INEQ subformula of a formula ϕ is bounded

quadratically in the number of variables in ϕ, which is at most maxCϕ
(Γ2).

(c) Clearly, for every ϕ and every partition π the size of Cϕ[θπ] is at most the
size of Cϕ.

(d) This follows from the definition of Γ3 and Lemma 14.
(e) This follows from the definition of Γ3 and Lemma 14.

⊓⊔

Here, we illustrate the effect of Step 4 on the formulas ϕ1 = R(x1, x2) ∧
R(x1, x3) and ϕ2 = R(x1, x2) from Example 30.

Example 33. We obtain the following formulas:

Partition π Formula ϕi[θπ]
{x1}, {x2}, {x3} ϕ0

1 = R(y1, y2) ∧R(y1, y3) ∧ y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3
{x1, x2}, {x3} ϕ1

1 = R(y1, y1) ∧R(y1, y2) ∧ y1 6= y2
{x1, x3}, {x2} ϕ2

1 = R(y1, y2) ∧R(y1, y1) ∧ y1 6= y2
{x1}, {x2, x3} ϕ3

1 = ϕ0
2 = R(y1, y2) ∧ y1 6= y2

{x1, x2, x3} ϕ4
1 = ϕ1

2 = R(y1, y1)

Consider the constraints t1 = (ϕ1, 3, 7) and t2 = (ϕ2, 2, 2). Then we have Γt1 =
{t′i | i = 0, 1, . . . , 4}, where7 t′0 = (ϕ0

1, 0, 7), t′1 = (ϕ1
1, 1, 7), t′2 = (ϕ2

1, 2, 7),
t′3 = (ϕ3

1, 3, 7), t′4 = (ϕ4
1, 4, 7). Also Γt2 = {t′′0 , t

′′
1}, where t′′0 = (ϕ0

2, 0, 2) and
t′′1 = (ϕ1

2, 2, 2).
Let Γ ′ be the reduced set of constraints which is equivalent to Γt1 ∪ Γt2 .

Notice that ϕ1
1 and ϕ2

1 are equivalent and hence there is only one constraint, say
t12, corresponding to them in Γ ′. Similarly, the formulas ϕ3

1 and ϕ0
2 and also ϕ4

1

and ϕ1
2 are equivalent and thus they are replaced with constraints t30 and t41 in

the reduced set Γ ′. Thus, there are the following constraints in Γ ′: t′0 (with the
formula ϕ0

1), t12 (with ϕ1
1), t30 (with the formula ϕ3

1) and t41 (with the formula
ϕ4

1). Notice that the ordering of Γ ′: t′0 < t12 < t30 < t41 is correct w.r.t. ACONST.
In particular, there is no tuple (e1, e2, e3) such that Cϕ3

1
|= ϕ0

1(e1, e2, e3). This

is because the INEQ subformula of ϕ0
1 mentions y2 6= y3 (compare this with

Example 30, where we considered the formulas ϕ0
1 and ϕ3

1 but without the INEQ
subformulas).

7 Note that the numbers kθ are chosen for the example only since they depend on A
also.

20

Finally, directly from lemmas 9, 16, 26 and 32 we have the following corollary
that relates the set of constraints Γ3 to the original input instance Γ .

Corollary 34. Let Γ = ΓCONST ∪ ΓPROP be a set of constraints and let a
database A satisfy Γ . There exists a reduced set of extended constraints Γ3 in
the normal form w.r.t. ACONST such that

1. A |= Γ3;
2. for every A′ which is a superstructure of ACONST such that A′ |= ΓCONST

and A′ |= Γ3 we also have A′ |= Γ ;
3. The size of Γ3 is at most exponential in the size of Γ . In particular:

(a) The number of constraints in Γ3 is at most exponential in the size of Γ ;
(b) maxϕ(Γ3) is at most exponential in the size of Γ ;
(c) maxCϕ

(Γ3) ≤ maxCϕ
(Γ);

(d) maxk,j(Γ3) ≤ 8maxk,j(Γ) + 7lcmj(Γ);
(e) lcmj(Γ3) ≤ lcmj(Γ).

6 Satisfying ΓCONST ∪ Γ ′

PROP

From Corollary 34 we have that for a set Γ = ΓCONST ∪ ΓPROP of modulo
constraints and for a database A satisfying Γ it is possible to construct an
exponentially bounded substructure ACONST of A such that ACONST |= ΓCONST

and a set Γ ′
PROP = Γ3 of extended constraints in the normal form w.r.t. ACONST

such that

1. A |= Γ3;
2. for every superstructure B of ACONST, if B satisfies ΓCONST∪Γ3 then B also

satisfies Γ .

The normal form of Γ3 guarantees the following:

– each formula contains the NotConstants subformula, so that the variables
cannot be substituted with elements from dom(ACONST);

– each formula consists of a single connected subformula and does not contain
ground atoms and hence, each formula is controllable;

– each formula contains the INEQ subformula, so that distinct variables within
the same formula cannot be substituted with the same element of a database.

In order to prove Theorem 7 it is enough to prove that from Γ3,ACONST

and A we can construct a database B of size exponential in Γ that satisfies
Γ3 ∪ ΓCONST.

First, we define an order on Γ3 that is correct w.r.t. ACONST..

Definition 35. We define a partial order ≤part on the constraints from Γ3 as
follows: (ϕ1, k1, j1) ≤part (ϕ2, k2, j2) if there exists a tuple a of elements of Cϕ1

such that Cϕ1
|= ϕ2(a).

We define ≤ to be some total order on the constraints from Γ3 consistent
with ≤part and, then, we define < to be the strict order implied by ≤.

21

Lemma 36. Let Γ3 be a set of constraints in the normal form w.r.t. ACONST.
Then the order < on Γ3 is well-defined and correct w.r.t. ACONST.

Proof. First, we prove that ≤part is well-defined. The only thing which may be
not completely obvious is whether ≤part is antisymmetric.

Suppose that (ϕ1, k1, j1) 6= (ϕ2, k2, j2), (ϕ1, k1, j1) ≤part (ϕ2, k2, j2) and
(ϕ2, k2, j2) ≤part (ϕ1, k1, j1). Thus, there are homomorphisms h : Cϕ2

→ Cϕ1

and h′ : Cϕ1
→ Cϕ2

. Notice that since Γ3 is in the normal form w.r.t. ACONST,
ϕ1 and ϕ2 contain the NotConstants and INEQ subformulas. Therefore h and
h′ are injective. Moreover, since Cϕ1

and Cϕ2
are finite, h and h′ are bijections

(as functions).
Now we would like to show that h is an isomorphism. It remains to show that

h−1, the inverse function of h, preserves structure. Suppose that, for a tuple a

of elements of Cϕ1
and a relation R we have Cϕ1

|= R(a) and Cϕ2
6|= R(h−1(a)).

Thus h maps the tuple (h−1(a)) not in R to the tuple a in R. Further, since h is
injective, the preimage under h of each tuple of elements of dom(Cϕ1

) consists of
a single tuple. Moreover, h maps tuples in R to tuples in R. Hence, the number
of tuples in R in Cϕ1

is strictly greater than the number of tuples in R in Cϕ2
.

However, a similar argument involving h′ shows that the number of tuples in
R in Cϕ1

is not greater than the number of tuples in R in Cϕ2
, what gives the

desired contradiction. Thus, Cϕ2
and Cϕ1

are isomorphic. Moreover, since ϕ1 and
ϕ2 contain the NotConstants and INEQ subformulas we have that ϕ1 and ϕ2 are
equivalent. However, this contradicts the claim that Γ3 is reduced. Therefore, we
conclude that ≤part is antisymmetric.

Now, we show for ϕ1, ϕ2 ∈ Γ3 that ACONST ⊎ Cϕ1
|= ϕ2(e) implies Cϕ1

|=
ϕ2(e). Suppose that there is some tuple e such that ACONST ⊎ Cϕ1

|= ϕ2(e)
Thus, there is a homomorphism h : Cϕ2

→ ACONST ⊎ Cϕ1
that respects the

NotConstants and INEQ clauses of ϕ2. Hence each tuple of each relation R
in Cϕ2

is mapped by h either to a tuple in R in ACONST or to a tuple in R in
Cϕ1

. However, the former cannot happen. This is since no element corresponding
to a variable of ϕ2 can be mapped to dom(ACONST) (because ϕ2 contains the
NotConstants subformula) and since there is no tuple with constants only in R
in Cϕ2

(Γ3 is in the 2nd normal form and hence ϕ2 does not contain ground
atoms). Thus, in fact, h is a homomorphism from Cϕ2

to Cϕ1
.

Finally, we prove that any order < that is consistent with ≤part is also cor-
rect w.r.t. ACONST. Suppose < is not correct w.r.t. ACONST. Then there are
two constraints (ϕ1, k1, j1) and (ϕ2, k2, j2) in Γ3 such that (1) (ϕ1, k1, j1) ≤part

(ϕ2, k2, j2) and (2) ACONST ⊎ Cϕ2
|= ϕ1(e). Hence, since (2) Cϕ2

|= ϕ1(e) and
thus (ϕ2, k2, j2) ≤part (ϕ1, k1, j1), a contradiction with (1). ⊓⊔

We also need the following lemma.

Lemma 37. Let (ϕ, k, j) be a constraint in the normal form w.r.t. ACONST such
that Cϕ has exactly n automorphisms. 8 Then #(ϕ, Cϕ) = n. Moreover, for every
database B ⊇ ACONST we have #(ϕ,B) = α ∗ n, for some α ∈ N.

8 Recall that an automorphism of a structure C is an isomorphism from C to itself.

22

Proof. Clearly, if Cϕ |= ϕ(a) then for each automorphism σ of Cϕ we have Cϕ |=
ϕ(σ(a)). Hence, #(ϕ, Cϕ) ≥ n. Moreover, we also have that #(ϕ, Cϕ) ≤ n.
This is since ϕ contains the INEQ and NotConstants subformulas and thus each
mapping θ that substitutes variables in ϕ to the elements of Cϕ and respects
the INEQ and NotConstants subformulas must map distinct variables in ϕ to
distinct elements that cannot be constants. Therefore, since the elements of Cϕ
comprise the variables and constants of ϕ itself, θ is an isomorphism from Cϕ to
Cϕ, and hence an automorphism.

Consider now the set Φ of tuples satisfying ϕ in some database B ⊇ ACONST.
For some e1, e2 in Φ, we say that e1 ≡ e2 if σ(e1) = e2 for some automorphism
σ of Cϕ. Clearly, ≡ is an equivalence relation of Φ. As ϕ contains the INEQ and
NotConstants subformulas, ≡ partitions Φ into equivalence classes such that
each class has exactly n tuples. ⊓⊔

Notice however, that the above lemma would not be true if conjunctive
queries with projections were allowed. We illustrate this in the following ex-
ample.

Example 38. Consider the following query: ϕ(x) = ∃y1∃y2R(x, y1) ∧ R(x, y2).
Clearly, Cϕ has 2 automorphisms9 (i.e. σ1 that is the identity on {x, y1, y2} and
σ2 that swaps y1 and y2), but there is only one tuple (i.e. x) such that Cϕ |= ϕ(x).

Now, we are ready to present a single step of the construction of the small
database B from ACONST ⊆ A and Γ3.

Lemma 39. Let (ϕ, k, j) be a constraint in Γ3 and let B be a database such that
ACONST ⊆ B and B |= {t ∈ Γ3 | t < (ϕ, k, j)}. There exists a database B′ ⊇ B
such that B′ |= {t ∈ Γ3 | t ≤ (ϕ, k, j)}. The size of the database B′ is at most
size(B) + size(Cϕ) ∗ δ, where δ ≤ k + j.

Example 40. Consider constraints t1 = (ϕ1, 2, 2) and t2 = (ϕ2, 1, 6) with ϕ1 =
R(v, z1) ∧ R(v, z2) ∧ R

′(a, b, z1) ∧ NotConstants(v, z1, z2) ∧ INEQ(v, z1, z2) and
ϕ2 = R(x, y) ∧ NotConstants(x, y) ∧ INEQ(x, y). Clearly: t1 < t2. There are
two tuples x such that Cϕ1

|= ϕ2(x), namely (v, z1) and (v, z2). Let B be a
database presented schematically at Figure 3 such that B |= {t1}. We construct
the database B′ |= {t1, t2}. In order to satisfy t2 three copies of Cϕ2

should be
added.

Proof (of Lemma 39). Let n be the number of automorphisms of Cϕ. According
to Lemma 37, the number m = #(ϕ,B) is a multiple of n.

Let m′ be the smallest number such that m′ is a multiple of n (including 0)
and m′ +m = k+α ∗ j, for some α ∈ N. Notice that the number m′ exists since
Γ3 is satisfiable. Moreover, its value is bounded by k + j ∗ n. Indeed, let m′′ be
the smallest multiple of n which is at least k −m. Therefore m′′ ≤ k + n. Then
consider the following set M defined as {m′′ +β ∗n | β = 0, 1, . . . , j− 1}. Notice

9 The canonical structure Cϕ for a query ϕ of the form ∃xψ(x,y), where ψ is a
projection-free CQ is defined as Cψ.

23

Cϕ1

Cϕ1

copies of Cϕ2

inside Cϕ1

ACONST

new copies of Cϕ2
in B′

The database B

Fig. 3. The database B satisfying the constraint t1 from Example 40.

that, for every multiple N of n that is greater than k + j ∗ n, there is a number
in M that is congruent modulo j to N . Thus, m′ is one of the numbers in M .

We define the database B′ as the union of the database B and δ = m′

n
copies

of the canonical structure Cϕ, with constants from each copy of Cϕ identified with
respective elements of dom(ACONST). Formally, let C1

ϕ, . . . , C
δ
ϕ be the isomorphic

copies of Cϕ. We define B′ to be B⊎C1
ϕ⊎ . . .⊎Cδϕ. Hence, the size of B′ is at most

size(B) + size(Cϕ) ∗ δ.
Now, we show that B′ |= {t ∈ Γ3 | t ≤ (ϕ, k, j)}. First, we show that B′ |=

(ϕ, k, j). Let us count the number of tuples b such that B′ |= ϕ(b). It follows
from Lemma 29 that each such a tuple b is contained either in dom(B) or in the
domain of some Ciϕ. Clearly, there are exactly m tuples consisting of elements
of dom(B) only, and there are exactly m′ tuples (by Lemma 37), such that the
elements of each of them are all contained in some Ciϕ. Hence finally, there are
exactly m+m′ tuples satisfying ϕ and thus B′ |= (ϕ, k, j).

Now, we need to prove that by extending the structure we did not spoil one of
the old constraints. We claim that for each constraint (ϕ′, k′, j′) ∈ Γ3, such that
(ϕ′, k′, j′) < (ϕ, k, j), the number of tuples satisfying (ϕ′, k′, j′) in B′ is exactly
the same as in B. From Lemma 29 it follows that each new tuple e, such that
B′ |= ϕ′(e), must be contained in some new copy of Cϕ. But this would mean
that ACONST ⊎ Cϕ |= ϕ′(b). However, since (ϕ′, k′, j′) < (ϕ, k, j), this would
mean that < is not correct w.r.t. ACONST, a contradiction. ⊓⊔

The above proof would no longer be correct if we allowed projections in the
queries. This is since Lemma 37 was used there, and, as we have seen, this lemma
does not generalize to the scenario with projections. But actually, the very idea
of Lemma 39 – that having a satisfiable set of constraints in the normal form we
can extend any database satisfying some set of small (in the order ≤) constraints,
to a new database satisfying the small constraints and a new greater one – fails
if projections are allowed. Consider the following example.

Example 41. Let ϕ1(x) = ∃yR(x, y) and ϕ2(x, y) = R(x, y). Clearly, Cϕ1
and

Cϕ2
are isomorphic. Now, consider the constraints t1 = (ϕ1(x), 1, 2) and t2 =

(ϕ2(x, y), 0, 2). Our algorithm builds the satisfying database using disjoint copies
of canonical structures for queries. In this case, however, such database does not
exist – there is no database with an even number of copies of Cϕ2

and an odd

24

number of copies of Cϕ1
, such that all these copies are disjoint. But there is a

database satisfying both constraints t1 and t2: R(a, a) ∧R(a, b).

Proof (of Proposition 8). Suppose that a database A satisfies the set Γ =
ΓCONST∪ΓPROP. By application of Lemma 9 there exists a substructure ACONST

of A of size at most exponential in Γ that satisfies ΓCONST. By application of
Corollary 34 there exists a reduced set of constraints Γ3 in the normal form w.r.t.
ACONST such that

1. A |= Γ3;
2. for every A′ which is a superstructure of ACONST such that A′ |= ΓCONST

and A′ |= Γ3 we also have A′ |= Γ ;
3. The size of Γ3 is at most exponential in the size of Γ . In particular:

(a) The number of constraints in Γ3 is at most exponential in the size of Γ ;
(b) maxϕ(Γ3) is at most exponential in the size of Γ ;
(c) maxCϕ

(Γ3) ≤ maxCϕ
(Γ);

(d) maxk,j(Γ3) ≤ 8maxk,j(Γ) + 7lcmj(Γ);
(e) lcmj(Γ3) ≤ lcmj(Γ).

Let Γ3 = {t1, . . . , tn} such that for i, j ∈ {1, . . . , n}, if i < i′ then ti < ti′ . We
define a sequence of databases Ai, for i = 0, . . . , n, such that the database Ai

satisfies {t′i ∈ Γ3 | t′i ≤ ti}. We start from the database A0 = ACONST. Then, for
all i = 1, . . . , n, we process the constraint ti and construct a new database Ai

from the database Ai−1 using Lemma 39. From this lemma we have that finally
B = An satisfies Γ3.

We prove now that B is exponential in the size of Γ . Let s be the size of
Γ . From Lemma 9 the size of ACONST is at most exponential in s. While pro-
cessing ti in Γ3 we add at most maxk,j(Γ3) + lcmj(Γ3) copies of the canonical
structure for the formula in ti (Lemma 39). From Corollary 34 it follows that
the size of each such canonical structure is polynomial in s. Moreover, we claim
that the value maxk,j(Γ3) + lcmj(Γ3) is at most exponential in s. This is since
the value of maxk,j(Γ) is at most 2s (since the numbers are in binary). Fur-
ther, lcmj(Γ) ≤ maxk,j(Γ)|Γ | (since this is a product of at most |Γ | numbers

≤ maxk,j(Γ)). Hence, lcmj(Γ) ≤ (2s)s ≤ 2(s2). From Corollary 34 we have

maxk,j(Γ3) ≤ 8maxk,j(Γ) + 7lcmj(Γ). Hence, maxk,j(Γ3) = O(2(s2)). Moreover,

lcmj(Γ3) ≤ lcmj(Γ) = O(2(s2)) Hence, for each t ∈ Γ3, we add at most expo-
nentially many tuples to relations in B. Finally, since the number of constraints
in Γ3 is at most exponential as well, the size of B is exponential.

The only thing which would still be in doubt is if in the process of constructing
B that satisfies Γ3 we did not spoil anything concerning the constant constraints
ΓCONST which were satisfied in ACONST.

Lemma 42. Let A be a database such that A |= Γ3 ∪ ΓCONST, let ACONST be
a substructure of A such that ACONST |= ΓCONST and such that Γ3 is in the
normal form w.r.t. ACONST. Let B be a database as constructed in the previous
paragraphs. Then B |= ΓCONST.

25

We prove Lemma 42 below, but first, we would like to present some intuitions.
Clearly, we have to show that there is no new tuple a of elements of dom(B)
containing an element not in dom(ACONST), such that a satisfies a formula in a
constraint from ΓCONST. The main intuitive reason for it is that the structure B
has been built from copies of some substructures of A. These copies are disjoint
in B (in the sense that all elements which do not correspond to constants are
distinct), although they were not necessarily disjoint in A. However, since neither
inequalities nor negation are allowed, if there is such a new tuple a in B, then,
saying informally, there has already been some version of a in A (possibly with
some elements identified). We formalize this intuition in the rest of this section.

Definition 43. We say that C is a positive substructure of D if dom(C) ⊆
dom(D), for each constant symbol c of C we have cC = cD and for each relation
R we have RC ⊆ RD.

We make use of the following observation:

Observation 44. Let (ϕ, k, j) ∈ Γ3. If ACONST⊎Cϕ is a substructure of B then
ACONST ⊎ Cϕ is (isomorphic to) a positive substructure of A.

Proof (of the observation). Suppose ACONST ⊎ Cϕ is a substructure of B. Then
there exists a minimal number i such that ACONST⊎Cϕ is isomorphic to a positive
substructure of Ai (in particular ACONST ⊎ Cϕ is not isomorphic to a positive
substructure of Ai−1). Consider the constraint (ϕ′, k′, j′) ∈ Γ3 that we processed
at the i-th step of the construction of B. Since i is minimal, we extended the
database Ai−1 with at least one isomorphic copy of the canonical structure Cϕ.
Hence, Cϕ must be isomorphic to a positive substructure of Cϕ′ . Now there are
2 cases:

Case 1: k′ > 0. Since A |= {(ϕ′, k′, j′)} we know that #(ϕ′,A) = k′ + α ∗ j′.
Hence, there is at least one tuple satisfying ϕ′ in A. Therefore, since ϕ′ con-
tains the INEQ and NotConstants subformulas, ACONST ⊎Cϕ′ is isomorphic
to a positive substructure of A, and hence ACONST ⊎ Cϕ is isomorphic to a
positive substructure of A.

Case 2: k′ = 0. Recall that we extended Ai−1 with some number of copies of
Cϕ′ because #(ϕ′,Ai−1) 6= α ∗ j′ for any α ∈ N, including α = 0. Thus,
there is at least one tuple satisfying ϕ′ in Ai−1. Hence, as ϕ′ contains the
INEQ and NotConstants subformulas, ACONST ⊎Cϕ′ is isomorphic to a pos-
itive substructure of Ai−1. Therefore, since Cϕ is isomorphic to a positive
substructure of Cϕ′ , ACONST ⊎Cϕ is isomorphic to a positive substructure of
Ai−1. However, this contradicts the minimality of i and thus the case k′ = 0
is impossible. ⊓⊔

Proof (of Lemma 42). For each ϕ, for each substructure B′ of B of the form
ACONST ⊎ Cϕ such that GRAPH(B′) is a connected component of GRAPH(B),
fix a positive substructure A′ of A of the form ACONST⊎Cϕ. The existence of A′

is guaranteed by Observation 44. Let hB′ : B′ → A′ be the obvious isomorphism.

26

We define a mapping h : B → A. For c ∈ dom(ACONST) put h(c) = c. For
a 6∈ dom(ACONST) put h(a) = hB′(a), where B′ is such that a ∈ dom(hB′). Notice
that for each a ∈ dom(B) the value h(a) is well-defined. This is clear for a ∈
dom(ACONST). For a 6∈ dom(ACONST) notice that there is exactly one B′ such
that a ∈ dom(hB′). Clearly, there is at least one since all connected components
of GRAPH(B) are of the form GRAPH(Cϕ) for some (ϕ, k, j) ∈ Γ3. Moreover,
there is at most one since GRAPH(B′) is a connected component of GRAPH(B)
and a cannot be in two distinct connected components of GRAPH(B).

Now, suppose that B 6|= ΓCONST. So, there exists a tuple a of elements of
B, containing some element e not in dom(ACONST) such that for a constraint
(ψ, k, j) ∈ ΓCONST it holds B |= ψ(a). However, since h(e) is defined as hB′(e),
where hB′ is an isomorphism between B′ and A′, the tuple h(a) contains at least
one element (i.e. h(e)) not in dom(ACONST). Moreover, A |= ψ(h(a)). This is
since:

– h preserves structure – notice that there are no tuples in relations of B with
elements from distinct connected components of GRAPH(B), and for each
B′, hB′ is an isomorphism.

– Negation and inequality are not allowed in constraints from ΓCONST.

Therefore, we conclude that A 6|= ΓCONST, a contradiction. This completes the
proofs of Lemma 42 and Proposition 8. ⊓⊔

7 From the Intermediate Result to the Main Result

In this section we use some of the ideas from [2] to show how Theorem 7 implies
Theorem 5. We start with the following definition and lemma from [2].

Definition 45. Let R be a TreeQL-program and let d be a DTD such that R
does not typecheck with respect to d. Then:

– there is a path v = v1, . . . , vk in the program R where

1. v1 is a child of the root; and

2. vi+1 is a child of vi;

3. lab(vi) = (σi, ϕi(x1, . . . ,xi)), for i ∈ {1, . . . , k};
4. vk has precisely n children with labels (δ1, ψ1(x1, . . . ,xk, y1)), . . . ,

(δn, ψn(x1, . . . ,xk, yn)) in that order;

such that

– there is a database A with elements a = a1, . . . ,ak for which the following
holds

1. A satisfies ϕi(a1, . . . ,ai), for each i = 1, . . . , k;

2. δm1

1 . . . δmn
n /∈ d(σk) where mi = |{b | A |= ψi(a, b)}|, for all i = 1, . . . , n.

We say that (v,A,a) is a breakpoint for R and d.

27

Lemma 46 ([2]). Let δ1, . . . , δn be symbols and let V = (k1, j1), . . . , (kn, jn) be
a vector of n pairs of natural numbers. We denote by LV the language of all
words of the form: δk1+α1∗j1

1 . . . δkn+αn∗jn
n where each αi ∈ N, 1 ≤ i ≤ n. For

each regular language L over alphabet {δ1, . . . , δn}, there exists a finite set Vec of
vectors of pairs of natural numbers as above such that δ∗1 . . . δ

∗
n−L =

⋃

V ∈Vec
LV .

Moreover, the values of the numbers in Vec are bounded by the number of
states of the deterministic automaton recognizing the complement of L.

If R is a TreeQL program, v is a node of R, and d is a DTD then by Ld(v) we
denote the complement of the language specified by d for the Σ-label of v.

Lemma 47. Let R be a TreeQL program and let d be a DTD.

1. If R does not typecheck w.r.t. d then there is a node vk of R, there is a vector
V of n pairs of natural numbers, where n is the number of children of vk,
and there is a database A such that LV ⊆ Ld(vk), and such that the children
of a node of R(A) of the form (vk, θ) form a word in LV .
Moreover, the size of V is polynomial in the size of R and d.

2. Let vk be a node of R and let V be a vector of n pairs of natural numbers,
where n is the number of children of vk. If LV ⊆ Ld(vk) and there is a
database A such that the children of a node of R(A) of the form (vk, θ) form
a word in LV , then R does not typecheck w.r.t. d.

3. Let vk be a node of R and let V be a vector of n pairs of natural numbers,
where n is the number of children of vk. The containment test LV ⊆ Ld(vk)
can be done in PSPACE.

Proof. 1. The following proof comes from [2]. We use the notation introduced
in Definition 45. Assume that the program R does not typecheck w.r.t. DTD
d, then there exists a breakpoint (v,A,a) for R and d. Let L be the language
defined by the regular expression d(σk) and let N be the node of R(A) of the
form (vk, θ) where the error occurs. So, the word δm1

1 . . . δmn
n , formed by the

children of N , is not in L. Thus, it is in the regular language δ∗1 . . . δ
∗
n − L.

From Lemma 46 it follows that there exists a set of vectors Vec such that
δ∗1 . . . δ

∗
n − L =

⋃

V ∈Vec LV . Since (v,A,a) is a breakpoint, there is a vector
V in Vec such that the children of N form a word w in LV . Note also that, if
a vector V is in Vec, then LV is contained in Ld(vk). To prove the claim 1 it
remains to show the bound on the size of V . From Lemma 46 the numbers
in V are bounded by the number S of states of the DFA for Ld(vk). Clearly,
S is at most exponential in the size of DTD d. This is since the DFA for
Ld(vk) can be computed from d(σk) with at most exponential cost. Hence,
the sizes of the binary representations of the numbers in V are polynomial
in the size of d.

2. Consider a node N of the form (vk, θ) in the output tree R(A). Notice that
if LV is contained in Ld(vk) and if the children of N form a word w in LV
then w ∈ Ld(vk). Hence, w /∈ Ld(σk) and thus R does not typecheck w.r.t. d.

3. We present a brute-force algorithm to do the containment test in polynomial
space. Let L = Ld(vk) and let S be the number of states of the DFA for

28

L. First, notice that if some word w of the form δk1+α1∗j1
1 . . . δkn+αn∗jn

n is
not in L, where some αi > S, then there is a number βi ≤ S such that
δk1+α1∗j1
1 . . . δki+βi∗ji

i . . . δkn+αn∗jn
n is not in L either. Consider the state s of

the DFA for L that is reached after reading the prefix δk1+α1∗j1
1 . . . δki+αi∗ji

i .
Clearly, since αi > S, the same state s is reached after reading a word
δk1+α1∗j1
1 . . . δki+βi∗ji

i , for some βi ≤ S. Hence, it is enough to check all
words in LV with values of α1, . . . , αn bounded by S. Although such words
may be exponentially long, we represent them with all numbers written in
binary. Each of these words can be verified to be in L in PSPACE. Simply,
while reading a word w, we remember the set of reachable states of the NFA
A for d(σk). At the end, we check whether a final state of A can be reached.
If yes then w ∈ L. Otherwise, w /∈ L. Notice that the size of A is polynomial
in the size of d(σk) and thus we can remember each subset of the states of
A in polynomial space. ⊓⊔

In the proof of Theorem 5 we need also the following lemma.

Lemma 48. Let R be a TreeQL program, let vk be a node of R, let V be a
vector of n pairs of natural numbers, where n is the number of children of vk,
and let A be a database. There there is a set of modulo constraints ΓR,vk,V such
that A |= ΓR,vk,V if and only if there is a node N in R(A) which is of the form
(vk, θ) and the children of N form a word in LV . Moreover, the size of ΓR,vk,V

is polynomial in the size of R and V .

Proof. We define ΓR,vk,V to be a set of modulo constraints over the vocabulary
given by the program R with the new constant symbols a = a1, . . . ,ak.

For formulas ϕ1, . . . , ϕk in the nodes v1, . . . , vk that form a path from the root
of R to vk, we define the following constraint t0: (

∧

i=1,...,k ϕi(a1, . . . ,ai), 1, 0).
Notice that A |= t0 if and only if A satisfies ϕi(a1, . . . ,ai), for each i = 1, . . . , k.

For the l-th child of vk, with a formula ψl, we define the following constraint
tl = (ψl(a,yl), kl, jl), where (kl, jl) is the l-th pair of numbers in V .

Notice that A |= {t1, . . . , tn} if and only if δα1

1 . . . δαn
n ∈ LV , where αl =

|{b | A |= ψl(a, b)}|, for all l = 1, . . . , n.
Finally, ΓR,vk,V is defined as {t0, . . . , tn}. Notice that since the formulas in

the constraints in ΓR,vk,V are from R and the numbers in the constraints in
ΓR,vk,V are from V the size of ΓR,vk,V is polynomial in the size of R and V . ⊓⊔

Proof (of Theorem 5). The following NEXPTIME algorithm decides the com-
plement of the problem of typechecking. Let R be a TreeQL program and let d
be a DTD.

1. Guess a node vk in the program R. Let S be the number of states of the DFA
for Ld(vk) and let n be the number of children of vk. Then guess a vector V
of n pairs of natural numbers, with each number less or equal to S.

2. Verify whether LV ⊆ Ld(vk) and then whether ΓR,vk,V is satisfiable.

From claim 3 of Lemma 47 and from Theorem 7 it follows that the verification
phase is in NEXPTIME. From Lemma 48 and from claim 2 of Lemma 47 it

29

follows that for each vk and V such that LV ⊆ Ld(vk) if there is a database A
such that A |= ΓR,vk,V then R does not typecheck w.r.t. DTD d. Conversely,
if R does not typecheck w.r.t. d then from claim 1 of Lemma 47 it is possible
to guess vk and V such that LV ⊆ Ld(vk) and there is a database A such that
the children of a node of R(A) of the form (vk, θ) form a word in LV . Then
A |= ΓR,vk,V from Lemma 48. ⊓⊔

8 The Lower Bound

In this section we show that the problem of satisfiability of a set of modulo
constraints is NEXPTIME-hard. Then we use this result to show coNEXPTIME-
hardness of the typechecking problem.

Theorem 49. The problem of satisfiability of a set of modulo constraints is
NEXPTIME-hard, even if the numbers in the modulo constraints are represented
in unary.

Proof. We use a reduction from the following tiling problem. An instance of the
tiling problem I is a finite set of tiles T , a set of quadruples of tiles A ⊆ T 4,
two tiles s, e ∈ T and a natural number n in unary. An exponential square tiling
for I is a mapping δ : {1, . . . , 2n} × {1, . . . , 2n} → T satisfying the following
constraints:

– the first tile in the first row is s: δ(1, 1) = s;
– the first tile in the last row is e: δ(2n, 1) = e;
– all quadruples in the tiling are in A: for all 1 ≤ i < 2n, 1 ≤ j < 2n, (δ(i, j), δ(i+

1, j), δ(i, j + 1), δ(i+ 1, j + 1)) ∈ A

It is NEXPTIME-hard to decide whether, for a given tiling instance I, there
exists an exponential square tiling [4].

Let I be an instance of the tiling problem. We will construct an instance ΓI
of the satisfiability problem for modulo constraints such that ΓI is satisfiable if
and only if there exists an exponential square tiling for I.

Let us denote |T |−1 by d. We use the constants c0, c1, . . . , cd, unary relations
R01, R0d and a relation R of arity 2n+ 1. The relation R will encode the tiling
for I. The role of the constants and auxiliary relations R01, R0d is to characterize
the domain of the satisfying database, and thus, to provide a convenient tool to
describe the relation R.

We now describe the desired interpretation of the relations R01 and R0d. In
short, we require that R0d is the set {c0, . . . , cd} and R01 is the set {c0, c1}. The
constant ci represents the i-th tile in T , for i ∈ {0, 1, . . . , d}. Additionally, c0 and
c1 are used as binary digits in order to encode numbers of columns and rows in
the tiling. We use the following modulo constraints:

1. (R01(c0) ∧R01(c1), 1, 0);
2. (R01(x), 2, 0);
3. (

∧

i=0,...,dR0d(ci), 1, 0);

30

4. (R0d(x), d + 1, 0).

Now, we present the constraints concerning R. From our point of view only
some tuples in R are interesting. We say that a tuple (x1, . . . , x2n, z) of elements
of a database A is valid if for all i in {1, . . . , 2n}, xi is one of the two elements
from R01 and z is an element from R0d. Each valid tuple in R defines the value
of δ(i, j) (i.e. the tile used in the i-th column and j-th row of the tiling) for some
i, j ∈ {1, . . . , 2n}. The first n arguments of R serve as a binary encoding of i and
the next n arguments as a binary encoding of j. The last argument represents
the tile δ(i, j).

5. “there are no two distinct tuples describing the same column and row in the
tiling”: for all i, j ∈ {0, 1, . . . , c}, such that i 6= j:

(R(x1, . . . , xn, y1, . . . , yn, ci) ∧R(x1, . . . , xn, y1, . . . , yn, cj), 0, 0)

We have to ensure that each possible tile in the tiling is defined — we require
the existence of all possible 2(2n) valid tuples in R. We cannot express this
directly, since the numbers in the constraints should be in unary and the size of
the constraints should be polynomial. Instead, we use the Chinese Remainder
Theorem. Let p1, . . . , pk be the first k primes, where k is the smallest number
such that the product Πk

i=1pi is greater than 2(2n). Obviously, k ≤ 2n (note that
for each i we have pi ≥ 2).

Let ri be 2(2n) modulo pi, for i ∈ {1, . . . , k}. The constraints 6 say that the
number of valid tuples is congruent with ri, modulo pi, for every i. Obviously, if
we have 22n valid tuples, the constraints are satisfied. The Chinese Remainder
Theorem now shows that all solutions to these constraints (i.e. the numbers
of the tuples satisfying the formulas in these constraints) are congruent with
22n modulo Πk

i=1pi, which implies that there must be at least 22n valid tuples.
Since only the two elements from R01 (i.e. c0 and c1) are allowed as the first
2n arguments, and the first 2n arguments determine the (2n+ 1)-th argument,
2(2n) is also the maximal number of valid tuples in R. Moreover, since k ≤ 2n,
it follows from the prime number theorem that pk is O(n log n). Hence, all the
numbers ri and pi are O(n logn).

6. for i ∈ {1, . . . , k}:

(R(x1, . . . , xn, y1, . . . yn, z) ∧R0d(z) ∧
n
∧

j=1

(R01(xj) ∧R01(yj)), ri, pi)

The following constraints require that R describes a correct tiling. For simplicity,
we write ct, where t is a tile in T , to denote the constant representing the tile t.

31

7. “the first tile in the first row is s”: (R(c0, . . . , c0, c0, . . . c0, cs), 1, 0);
8. “the first tile in the last row is e”: (R(c0, . . . , c0, c1, . . . c1, ce), 1, 0);
9. “there are no quadruples in the tiling from the complement of A”: for all
r, s ∈ {1, . . . , n} and for all quadruples (t1, t2, t3, t4) ∈ T 4 \A:

(R(x1, x2, . . . , xr−1, c0, c1, . . . , c1, y1, y2, . . . , ys−1, c0, c1, . . . , c1, ct1)∧

R(x1, x2, . . . , xr−1, c1, c0, . . . , c0, y1, y2, . . . , ys−1, c0, c1, . . . , c1, ct2)∧

R(x1, x2, . . . , xr−1, c0, c1, . . . , c1, y1, y2, . . . , ys−1, c1, c0, . . . , c0, ct3)∧

R(x1, x2, . . . , xr−1, c1, c0, . . . , c0, y1, y2, . . . , ys−1, c1, c0, . . . , c0, ct4), 0, 0).

This ends the construction of the set of constraints ΓI . Clearly, this reduction
can be done in polynomial time and it is easy to prove its correctness. ⊓⊔

Theorem 50. The problem of typechecking a TreeQL program with projection-
free CQs10 w.r.t. a DTD with arbitrary regular expressions is coNEXPTIME-
hard.

Proof. We reduce the satisfiability problem of a set of modulo constraints with all
numbers represented in unary to the complement of the typechecking problem.

Let Γ = {(ϕi, ki, ji) | 1 ≤ i ≤ n} be a set of modulo constraints, with all
numbers represented in unary. We construct a TreeQL program P and a DTD
d such that P does not typecheck w.r.t. d if and only if there exists a database
A satisfying Γ . Then, the claim will follow from Theorem 49.

The TreeQL program is defined as follows:

result

(a1, ϕ1) (a2, ϕ2) . . . (an, ϕn)

�������

J
JJ

PPPPPPP

Now, we define a DTD d with regular expressions over the alphabet Σ =
{a1, a2, . . . , an}. For each i ∈ {1, 2, . . . , n}, let ri be a regular expression describ-
ing the language:

{ami

i |mi 6= ki + αi ∗ ji for each αi ∈ N}.

Since ki and ji are in unary, it is easy to construct such an expression of a size
bounded polynomially w.r.t. ki + ji (e.g. for ki = 3 and ji = 5 we have the
regular expression (ǫ+ ai + aiai + aiaiaiai)(aiaiaiaiai)

∗).
Let us denote Σq

p = {ai ∈ Σ | p ≤ i ≤ q} if p ≤ q, and Σq
p = ∅ otherwise.

For each i ∈ {1, 2, . . . , n} we define si to be the regular expression (Σi−1
1)∗ · ri ·

10 The definition of projection-free CQs is in Section 2.

32

(Σn
i+1)

∗. Intuitively, if for some database A the children of the root node of P (A)
form a word in si then A does not satisfy the modulo constraint (ϕi, ki, ji).

Finally, the DTD d is defined as follows: d(result) = s1 + s2 + . . . + sn and
d(ai) = ǫ (for each i ∈ {1, 2, . . . , n}).

Suppose the TreeQL program P does not typecheck w.r.t the DTD d. Hence,
there is a database A such that P (A) does not satisfy d. Consequently, the
children of the root of P (A) form a word w not in the language of si, for each
i ∈ {1, 2, . . . , n}. Hence, the word w is of the form:

ak1+j1∗α1

1 ak2+j2∗α2

2 . . . akn+jn∗αn
n ,

for some α1, . . . , αn ∈ N. Clearly, A satisfies the set of constraints Γ .
Conversely, if there is a database A such that A |= Γ then P (A) does not

satisfy d and consequently P does not typecheck w.r.t. d. ⊓⊔

9 Conclusions

We have proved that the typechecking problem for TreeQL programs containing
projection-free conjunctive queries and DTDs with arbitrary regular expressions
is coNEXPTIME-complete. Our main technical contribution consists of prov-
ing NEXPTIME-completeness of the problem of satisfiability of a set of modulo
constraints with projection-free conjunctive queries. In our opinion the notion of
modulo constraints is natural and simple. However, in spite of this, very little is
known about the complexity of satisfiability of modulo constraints. In [2] it was
shown that if we allow projection-free conjunctive queries with negations and
inequalities in the constraints then the problem is decidable, but the algorithm,
presented there, has non-elementary complexity. To make things worse in pres-
ence of projections we do not even know whether the problem is decidable. And,
at the same time, we cannot disprove the following conjecture:

Conjecture. For each satisfiable set of modulo constraints with conjunctive
queries (possibly with projections) there is a satisfying database of exponential
size.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. Typechecking
XML views of relational databases. ACM Trans. Comput. Log., 4(3):315–354,
2003.

[3] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. XML with
data values: typechecking revisited. J. Comput. Syst. Sci., 66(4):688–727, 2003.

[4] Bogdan S. Chlebus. Domino-Tiling Games. J. Comput. Syst. Sci., 32(3):374–392,
1986.

[5] James Clark and Makoto Murata. Relax NG. http://www.relaxng.org.

33

[6] Heinz-Dieter Ebbinghaus and Joerg Flum. Finite model theory. Springer, 1999.
[7] Joost Engelfriet and Heiko Vogler. Macro tree transducers. J. Comput. Syst. Sci.,

31(1):71–146, 1985.
[8] Mary Fernandez, Dan Suciu, and Wang-Chiew Tan. SilkRoute: trading between

relations and XML, 2000.
[9] Alain Frisch and Haruo Hosoya. Towards Practical Typechecking for Macro Tree

Transducers. In Marcelo Arenas and Michael I. Schwartzbach, editors, DBPL,
volume 4797 of Lecture Notes in Computer Science, pages 246–260. Springer,
2007.

[10] Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl. Xml type
checking with macro tree transducers. In Chen Li, editor, PODS, pages 283–294.
ACM, 2005.

[11] Sebastian Maneth, Thomas Perst, and Helmut Seidl. Exact XML Type Checking
in Polynomial Time. In Schwentick and Suciu [18], pages 254–268.

[12] Wim Martens and Frank Neven. On the complexity of typechecking top-down
XML transformations. Theor. Comput. Sci., 336(1):153–180, 2005.

[13] Wim Martens and Frank Neven. Frontiers of tractability for typechecking simple
XML transformations. J. Comput. Syst. Sci., 73(3):362–390, 2007.

[14] Wim Martens, Frank Neven, and Marc Gyssens. On Typechecking Top-Down
XML Tranformations: Fixed Input or Output Schemas. Inf. Comput. to appear.

[15] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. Expressive-
ness and complexity of XML Schema. ACM Trans. Database Syst., 31(3):770–813,
2006.

[16] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers.
J. Comput. Syst. Sci., 66(1):66–97, 2003.

[17] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy
of xml schema languages using formal language theory. ACM Trans. Internet

Techn., 5(4):660–704, 2005.
[18] Thomas Schwentick and Dan Suciu, editors. Database Theory - ICDT 2007, 11th

International Conference, Barcelona, Spain, January 10-12, 2007, Proceedings,
volume 4353 of Lecture Notes in Computer Science. Springer, 2007.

[19] W3C. Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/xml,
1999.

[20] W3C. XML Schema Part 1: Structures. http://www.w3.org/TR/xmlschema-1,
2004.

[21] Piotr Wieczorek. Complexity of Typechecking XML Views of Relational
Databases. In Schwentick and Suciu [18], pages 239–253.

34

