IxFree

Step-Indexed Logical Relations in Coq

Piotr Polesiuk

Institute of Computer Science, University of Wroctaw

ppolesiuk@cs.uni.wroc.pl

Abstract

Step-indexed logical relations allow to handle complex program-
ming language features, but using them in practice leads to compli-
cated proofs because of ubiquitous step-index arithmetic. Dreyer et
al. proposed the LSLR logic to treat indices in a more abstract way
hiding them from the user. In this work we present IxFree, a Coq
library, based on a shallow embedding of the LSLR logic, to reason
about step-indexed logical relations in a simple and elegant way.

1. Introduction

Step-indexed logical relations [1H3]] are a powerful tool for reason-
ing about programming languages. Instead of describing a general
behavior of program execution, they focus on the first n compu-
tation steps, where the step index n is an additional parameter of
the relation. This additional parameter makes it possible to define
logical relations inductively not only on the structure of types, but
also on the number of computation steps that are allowed for a pro-
gram to make and, therefore, they provide an elegant way to reason
about features that introduce non-termination to the programming
language, including recursive types [2] and references [[1].

However, reasoning directly about step-indexed logical rela-
tions is tedious because proofs become obscured by step-index
arithmetic. In order to avoid this problem, Dreyer et al. proposed
logical step-indexed logical relations (LSLR) [6] that is a modal
logic where step-indices are treated in a more abstract way and they
are hidden from the user. The key feature of the LSLR logic is a
later modality borrowed from Appel et al.’s “very modal model” [4]]
that allows to shift relation to another index and helps defining re-
cursive predicates over indices. Since LSLR is a modal logic, it
cannot be used directly in Coq without proper embedding.

In this work we present IxFree: a shallow embedding of LSLR
logic in Coq. In contrast to Appel et al.’s formalization of the “very
modal model,” our approach is less shallow, which allows us to
reuse a number of existing Coq tactics. We used our library to
formalize step-indexed logical relations for coherence of control-
effect subtyping [5]. The source code is available at http://wuw.
ii.uni.wroc.pl/~ppolesiuk/IxFree.

2. Embedding of the LSLR logic

The LSLR logic is an intuitionistic logic for reasoning about one
particular Kripke model: where possible worlds are natural num-
bers (step-indices) and where future worlds have smaller indices
than the present one. All formulas are interpreted as monotone
(non-increasing) sequences of truth values, whereas the connec-
tives are interpreted as usual. In particular, in the case of impli-
cation we quantify over all future worlds to ensure monotonicity,
so the formula ¢ =) is valid at index n (written n = ¢ = 1) iff
k = ¢ implies k |= v for every k < n. In contrast to the original

formulation we do not assume that all formulas are valid in world
0, because it is not necessary.

2.1 Indexed propositions

To represent propositions in the IxFree library we have a special
type IProp of “indexed propositions” defined as a type of mono-
tone functions from nat to Prop.
Definition monotone (P : nat — Prop) :=
Vn, P(Sn — Pn.
Definition IProp :=
{ P : nat — Prop | monotone P }.

Definition I_valid_at (n : nat) (P : IProp) :=
projl_sig P n.
Notation "n | P" := (I_valid_at n P).

Logical connectives are functions on type IProp with defined
human readable notation. The library provides lemmas and tac-
tics representing the most important inference rules. Tactics not
only apply the corresponding lemmas, but also hide the step in-
dex arithmetic from the user. For instance, when proving sequent
Q F P = @ represented by the following Coq goal

P : IProp
Q : IProp
k : nat

H1 : k EQ
kEP=0Q

the introduction of implication tactic iintro H2 behaves exactly
like introduction of implication rule, producing the goal

P : IProp
Q : IProp
k : nat

H1 : k EQ
H2 : k EP

K = Q

even if the lemma corresponding to that rule requires quantification
over all smaller indices:

Lemma I_arrow_intro {n : nat} {P Q : IProp} :
Wk, k<n, EP — (kEQ)—
EP=0Q.

http://www.ii.uni.wroc.pl/~ppolesiuk/IxFree
http://www.ii.uni.wroc.pl/~ppolesiuk/IxFree

2.2 Later modality

The LSLR logic is equipped with a modal operator > (later), to
provide access to strictly future worlds. The formula > means ¢
holds in any future world, or formally [>¢ is always valid at world
0,and n + 1 | >y iff ¢ is valid at n (and other future worlds by
monotonicity). The later operator comes with two inference rules:
Yk . F,D@HOLb
Nl bl i LI
TonFog TFe

The first rule allows one to shift reasoning to a future world, making
the assumptions about the future world available. The Lob rule
expresses an induction principle for indices. Note that the premise
of the rule also captures the base case, because the assumption >¢
is trivial in the world 0. The later operator comes with no general
elimination rule.

As other connectives in the IxFree library, later is represented as
a function on type IProp and the library provides tactics that cor-
respond to the inference rules. In particular, tactic later_shift
corresponding to the I>-intro rule not only removes the later opera-
tor from the goal, but also from the premises that it guards.

2.3 Recursive predicates

Predicates in LSLR logic as well as step-indexed logical relations
can be defined inductively on indices. More generally, we can de-
fine a recursive predicate ur.o(r), provided all occurrences of 7 in
 are guarded by the later operator, to guarantee well-foundedness
of the definition. Such syntactic requirement is not compatible with
structural recursion in Coq, so we rely on the notion of contrac-
tiveness [4]. Informally, function is contractive if it maps approxi-
mately equal arguments to more equal results. This intuition can be
expressed using the later modality:

Definition contractive (1 : list Type)
(f : TRel 1 — IRel 1) : Prop :=
V Ri R2, = >(R1 =~ R2) = f R1 = £ Ra.

where IRel 1 is a type of indexed relations on types described by
1, and =~; is an indexed version of relation equivalence. The library
provides a general method of constructing recursive relations as a
fixed point of a contractive function:

Definition I_fix
(1 : list Type) (f : IRel 1 — IRel 1)
contractive 1 £ — IRel 1.

If all occurrences of the function argument are guarded by the later
operator, then the function can be proven to be contractive, and the
proof can be (mostly) automatized by the auto_contr tactic.

2.4 User defined predicates

Since the logic is developed for reasoning about one particular
model, we can freely add new inference rules for the logic if we
prove they are valid in the model. We can also add new relations or
predicates to the logic if we provide their monotone interpretation.

Definition mk_IProp (P
monotone P — IProp.

: nat — Prop)

In particular, constant functions are monotone, so we can safely use
predicates defined outside of the logic, such as typing or reduction
relations.

Definition I_Prop (P : Prop)
mk_IProp (A _, P) (A _ H, H).
Notation "(P);" := (I_Prop P).

IProp :=

3. Related work

“Very modal model” The Coq formalization accompanying Ap-
pel et al’s “very modal model” [4] hides step-indices in a similar
way. But one of the main differences between our library and their
formalization is a way of keeping track of the assumptions. Instead
of interpreting a sequent @1, ..., @, - ¢ directly, we treat it as
k [= 1 with the standard Coq assumptions k = ¢1, ..., k = ¢n.
This approach is very convenient since it allows for reusing a num-
ber of existing Coq tactics.

ModuRes ModuRes [7] is a library that also supports step-
indexed logical relations, by providing machinery for solving re-
cursive domain equations like recursive predicates in LSLR. But
this mechanism is not limited to types representing propositions
and because of this generality, step-index arithmetic is not per-
fectly hidden from the user. We believe that our approach is more
convenient in cases where only indexed propositions are needed.

References

[1] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation
independence. In B. C. Pierce, editor, Proceedings of the Thirty-Sixth
Annual ACM Symposium on Principles of Programming Languages,
pages 340-353, Savannah, GA, USA, Jan. 2009. ACM Press.

[2] A. J. Ahmed. Step-indexed syntactic logical relations for recursive
and quantified types. In P. Sestoft, editor, Programming Languages
and Systems, 15th European Symposium on Programming, ESOP 2006,
volume 3924 of Lecture Notes in Computer Science, pages 69-83,
Vienna, Austria, Mar. 2006. Springer.

[3] A. W. Appel and D. McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Transactions on
Programming Languages and Systems, 23(5):657-683, 2001.

[4] A. W. Appel, P. Mellies, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type system. In M. Felleisen,
editor, Proceedings of the Thirty-Fourth Annual ACM Symposium on
Principles of Programming Languages, pages 109-122, Nice, France,
Jan. 2007. ACM Press.

D. Biernacki and P. Polesiuk. Logical relations for coherence of effect
subtyping. In T. Altenkirch, editor, /3th International Conference on
Typed Lambda Calculi and Applications (TLCA 2015), volume 38 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 107—
122, Warsaw, Poland, July 2015. Schloss Dagstuhl — Leibniz-Zentrum
fuer Informatik.

[6] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. Logical Methods in Computer Science, 7(2:16):1-37, 2011.

[7] F. Sieczkowski, A. Bizjak, and L. Birkedal. Modures: A coq library
for modular reasoning about concurrent higher-order imperative pro-
gramming languages. In C. Urban and X. Zhang, editors, Interactive
Theorem Proving: 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015, Proceedings, pages 375-390, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-22102-1.

[5

—_

	Introduction
	Embedding of the LSLR logic
	Indexed propositions
	Later modality
	Recursive predicates
	User defined predicates

	Related work

