
Functorial Syntax for All
Piotr Polesiuk

ppolesiuk@cs.uni.wroc.pl
Institute of Computer Science

University of Wrocław
Wrocław, Poland

Filip Sieczkowski
f.sieczkowski@hw.ac.uk

School of Mathematics and Computer Science
Heriot-Watt University

Edinburgh, United Kingdom

1 Functorial approach to binding
Variable binding, in its many forms, is ubiquitous in pro-
gramming languages; therefore, approaches to representing
binding structures and reasoning about them in theorem
proving systems abound. From simple named representa-
tions, to nameless and locally nameless syntax via de Bruijn
indices, to higher-order abstract syntax and nominal tech-
niques, many approaches have been tried, andmany libraries,
plugins and formalisations developed. In this talk we present
another library, based on the notion of functorial syntax, and
report on our experience in its development and use across
a number of formalisation projects.
Let us begin by introducing the functorial approach to

binding and syntax, via the following representation of 𝜆-
terms.

Inductive term (X : Set) : Set :=

| var : X → term X

| lam : term (inc X) → term X

| app : term X → term X → term X.

The key idea of this representation is to parametrise the
type of terms by a set X that describes a scope. The variable
constructor (var) accepts only variables that are in the scope,
while lambda-abstraction (lam) extends the scope by one
element (type inc is isomorphic to option). A substitution
operation substitutes for a variable added by an inc type,
and is implemented via simultaneous substitution, which
turns out to be a monadic bind function.

Fixpoint bind {X Y : Set}

(f : X → term Y) (t : term X) : term Y.

Definition subst {X : Set} :

term (inc X) → term X → term X.

Since our representation is well-scoped, we need a way to
explicitly inject terms from one scope to a larger scope, e.g.,
when we proceed to substitute under a binder. It turns out
that this can be achieved by a fmap function, which imple-
ments a more general variable renaming.

Fixpoint fmap {X Y : Set}

(f : X → Y) (t : term X) : term Y.

The observation that the renaming is a functorial action and
that, therefore, the crucial aspect of syntax with binding is
its functoriality with respect to the set of its allowed free
variables (and their renamings) is the cornerstone of Fiore et
al.’s functorial view of binding [3]. Interestingly, the choice

to parameterise terms with sets (and general functions) is
not crucial: we can make the construction more general by
treating syntax (the type term in our example) as a functor
from a chosen renaming category, whose objects represent
scopes and arrows (which appear as the first argument of
fmap above) represent valid renamings, into the category of
sets: in other words, a preasheaf. The observation itself is
not new; however, to the best of our knowledge it has not
been utilised as a basis of a generic library for binding. In
the following sections we sketch how this can be achieved,
and what benefits can be garnered from this approach.

2 Type classes for parameterisation wrt.
renaming categories

At the core of our approach lies the reification of the notion
of a renaming category as a (set of) Coq typeclasses. This
includes a notion of arrows (i.e., valid renamings for our
domain), together with identity and composition, and their
properties, and the notion of the functorial action of type
constructors on these arrows, i.e., functoriality, which needs
to be provided by the user for each of the types they define.
In addition to this, the library provides a second category
of substitutions, which is connected to the renamings via
the usual embedding (which treats a renaming as a substi-
tution) and properties. The action of type constructors on
substitutions, which the user also needs to provide, is si-
multaneous substitution and gives the type constructor a
monadic structure.

In order for these notions to work appropriately, a notion
of lifting an arrow (in either category) over a binder is needed
— and expressed via a subsidiary set of typeclasses. Note that
this notion is also semantic, and thus not immediately tied to
any particular notion of a binder — in particular, the lifting
is not a priori limited to single binders (although default
instances for treating this case are provided).
This secondary layer of typeclasses is then extended to

allow for weakening and single substitution with respect
to the kinds of binders that occur in the language under
consideration. This, of course, assumes that the appropriate
arrows can be defined: while the requisite typeclass to encode
weakening exists, a linear instantiation, where all renamings
need be bijective, would not be definable, and thus shifting
would be disallowed for such an instantiation.

The remainder of the library is defined with respect to
these fundamental typeclasses. This includes a number of

https://orcid.org/0000-0002-7012-4346
https://orcid.org/0000-0001-5011-3458


Piotr Polesiuk and Filip Sieczkowski

built-in instantiations (and constructions on these), derived
lemmas and a rudimentary simplification algorithm, which
makes term simplification automatic in most commonly en-
countered cases.

3 Benefits of the approach
We have successfully applied our library to develop some
larger formalisations [1, 2, 4, 5] and several toy examples.
Based on our experience, we can summarise benefits of our
approach as follows.

Multiple instantiations of the framework. While in
most cases parametrising terms by sets is sufficient, we found
the flexibility of our approach useful in some scenarios. If we
have more than one sort of variables (e.g., regular variables
and type variables), we can parametrise terms by a tuple of
sets — one set for each variable namespace (see [2] for an
example of such a formalisation). With a functorial approach
we get many desired properties almost for free. For instance,
substitutions for variables of different sort are represented
by the same bind function, and their commutation is a simple
consequence of bind laws.

As another example, we can define intrinsically-typed syn-
tax, when the syntax form a functor on renaming category
with typing contexts as objects. We can even go further and
restrict a category of renamings. For example, if we restrict
renamings to bijective functions, we can use variable-binding
machinery to manage resources and formalise calculi with
mutable state or other substructural calculi.

Finally, thanks to general approach based on type classes,
we can have several instantiations in one formalisation. For
instance, we can work with well-scoped terms typed by
intrinsically well-kinded types.

Non-standard substitutions. Aside from instantiating
the framework with different renaming categories, we can
provide other substitution-like operations, as long as they
can be expressed as a monadic bind. As an example, we can
have variables that represents abstract contexts with one
hole while the substitution plugs a term into substituted
context, as in some presentation of Parigot’s 𝜆𝜇 calculus [7].
See [1] for an example formalisation.

Functoriality. A number of benefits seems to stem from
the notion of functoriality itself. We encountered a partic-
ularly striking case in a recent formalisation [5], where we
were able to define a normalization-by-evaluation algorithm
within the internal language of presheaves — crucially, build-
ing on top of the functorial syntax of neutral and normal
forms. This allowed us a construction where a number of
properties, usually proved post-hoc, was baked into the con-
struction.We conjecture that similar benefits can be garnered
in formalisation of continuation-passing-style transforma-
tions, where the functoriality of continuations is a crucial
aspect of correctness of the transformation.

Binding arbitrary sets of variables. The central idea of
our approach is to parametrise terms by their scope, while
the variable binding phenomenon has a secondary role and
is expressed as some operation on the scope. Therefore, we
can work with variable binding schemes other than binding
just a single variable, as long as we can express them as an
operation on the scope. As an example, consider a lambda
calculus where functions may bind multiple variables via
patterns.

Inductive term (A : Set) : Type :=

| lam : ∀ B : Set ,

pattern B → term (B + A) → term A

...

In this example, patterns are described by a type indexed by
a set of variables bound by the pattern. Note that terms and
patterns must be defined in sort Type, but we can also define
them in Set if we describe scopes by some inductive type of
syntactic representations of finite sets.

4 Ongoing and future work
In its current state,1 the library provides the basic function-
ality that is sufficient for its use in relatively sophisticated
formalisations; however, there are several directions that we
would like to pursue to allow for wider adoption.

• Automation. The library currently provides very lim-
ited amount of automation, via simplification tactics.
This could be improved in two ways: most impor-
tantly, by adapting a better simplification algorithm,
for which we could adapt the Autosubst approach [6]
via reflection. The second aspect, which we do not pur-
sue at the moment, would require building a plugin
to allow defining certain typeclass instances automat-
ically, thus reducing the boilerplate definitions.

• Contexts via metavariables. We are exploring an ap-
proach to defining (multi-hole) contexts and terms
at once via metavariables, which could lessen the
formalisation load in cases where general contexts
are required. The initial experiments suggest that the
approach is compatible with the binding library, al-
though more work is required to design an optimal set
of notions that would make the integration of contexts
seamless.

• Additional instantiations. We are experimenting with
additional instantiations and their integration with
the library, from linear binders, to better support for
binding multiple variables at once, to interesting inter-
actions between well-typed and well-scoped syntax,
and their impact on obtaining natural statements for
common theorems.

1For the sources of a current version of the library, consult the Binding
subdirectory of the recent formalization of [5], available at https://github.
com/logsem/fw-rec-inj/.

https://github.com/logsem/fw-rec-inj/
https://github.com/logsem/fw-rec-inj/


Functorial Syntax for All

References
[1] Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. 2019. Proving

Soundness of Extensional Normal-Form Bisimilarities. Log. Methods
Comput. Sci. 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:31)2019

[2] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.
2020. Binders by day, labels by night: effect instances via lexically
scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1–48:29.
https://doi.org/10.1145/3371116

[3] Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. 1999. Abstract
Syntax and Variable Binding. In 14th Annual IEEE Symposium on Logic
in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society,
193–202. https://doi.org/10.1109/LICS.1999.782615

[4] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equiv-
alence of Effect Handlers and Delimited Control. In 4th International
Conference on Formal Structures for Computation and Deduction, FSCD
2019, June 24-30, 2019, Dortmund, Germany (LIPIcs, Vol. 131), Herman

Geuvers (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30:1–
30:16. https://doi.org/10.4230/LIPICS.FSCD.2019.30

[5] Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, and Lars
Birkedal. 2024. The Essence of Generalized Algebraic Data Types.
Proc. ACM Program. Lang. 8, POPL, to appear (2024). https://github.
com/logsem/fw-rec-inj/

[6] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. 2019. Autosubst 2:
reasoning with multi-sorted de Bruijn terms and vector substitutions.
In Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-
15, 2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 166–180.
https://doi.org/10.1145/3293880.3294101

[7] Kristian Støvring and Søren B. Lassen. 2009. A Complete, Co-inductive
Syntactic Theory of Sequential Control and State. In Semantics and Al-
gebraic Specification, Essays Dedicated to Peter D. Mosses on the Occasion
of His 60th Birthday (Lecture Notes in Computer Science, Vol. 5700), Jens
Palsberg (Ed.). Springer, 329–375. https://doi.org/10.1007/978-3-642-
04164-8_17

https://doi.org/10.23638/LMCS-15(1:31)2019
https://doi.org/10.1145/3371116
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.4230/LIPICS.FSCD.2019.30
https://github.com/logsem/fw-rec-inj/
https://github.com/logsem/fw-rec-inj/
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1007/978-3-642-04164-8_17
https://doi.org/10.1007/978-3-642-04164-8_17

	1 Functorial approach to binding
	2 Type classes for parameterisation wrt. renaming categories
	3 Benefits of the approach
	4 Ongoing and future work
	References

