Logical Relations for Algebraic Effects

Dariusz Biernacki Maciej Pirog Piotr Polesiuk
Filip Sieczkowski

Institute of Computer Science
University of Wroctaw

Algebraic effects, introduced 15 years ago by Plotkin and Power [5], as well as
algebraic effect handlers of Plotkin and Pretnar [6], are making a breakthrough
in the programming language design. The reason for this is the promise of
effectful programming that is modular at the same time, driven by algebraic
effects’ inherent separation between effect interfaces and their implementations.
Thus, a programmer can express the effectful programs by only referring to
the interface, while multiple handlers can give diverse interpretations to the
operations provided by the interface. In the last few years, the languages that
employ this technique to allow effectful computations are gaining in complexity,
routinely utilising type-and-effect systems of varying sophistication (e.g., Bauer
and Pretnar’s Eff [7], Hillerstrom and Lindley’s extensions to Links [2], Lindley
et al.’s Frank [4] or Leijen’s Koka [3]). However, novel reasoning techniques
have not yet followed these developments in language design.

In this talk, we would like to present a logical relation for reasoning about
contextual equivalence and contextual approximation of programs in a language
with algebraic effect handlers and row-based polymorphic type-and-effect sys-
tem. We start with a state-of-the-art programming language with algebraic
effects, Leijen’s Koka, identify the challenging subset of the calculus and use
the standard technique of biorthogonality to build a step-indexed relational in-
terpretation (cf., for instance, Benton and Hur [1]) that allows us to reason
about approximation and equivalence, as well as show soundness of the type
system. We are then able to use the relation to show equivalence of various
programs (including equivalence of pure and effectful code), as well as some
interesting type-directed equivalences.

The challenge in building a biorthogonal relational interpretation of a lan-
guage with algebraic effects is twofold. Firstly, in such a language values are not
the only sensible irreducible expressions: the second kind of normal forms are
effect operations applied to a value. Thus, to check that two evaluation contexts
are related it would no longer suffice to observe their behaviour when plugged
with related values. The challenge, then, is to extend the framework to handle
the effects of a computation properly. Moreover, since the type system includes
quantification over arbitrary effect rows, the extension has to be uniform enough
to allow for universal quantification over the interpretations of effect rows.

An interesting choice in Koka, wholly in keeping with the idea of algebraic
effects, is to allow multiple occurrences of the same effect name in the row.
However, our interpretation shows that for this idea to be fully realised, the
calculus has to be extended with an additional operation, which we introduce



and show to behave well with the rest of the calculus. We are also able to
strengthen the effect subsumption rules significantly: as usual, the soundness
of these extensions follows as a corollary from the correctness of the logical
relation.

Finally, we demonstrate that the relation is a useful tool for proving program
equivalence. To this end, we use type of polymorphic higher-order computations
that can receive various effectful and non-effectful implementations of certain
operations, and show that such implementations can easily be shown equivalent
by choosing an appropriate interpretation, regardless of the number and names
of effects used by the implementations. We also show, as an example of a general
type-directed equivalence, that the usual return clauses in handlers are not
necessary in our calculus (i.e., that we can always transform the program to an
equivalent one which does not use a non-trivial return clause). Thus, we believe
that our technique of interpreting algebraic effects and row polymorphism has
the potential to be a useful tool for showing program equivalence.

In conclusion, we feel that the work on proving contextual equivalence in
presence of algebraic effects and row polymorphism falls squarely within the
scope of the HOPE workshop, and we feel it would be particularly interesting
to its audience. We also expect that the discussion at the workshop would help
us develop this line of work to its fullest potential.

References

[1] N. Benton and C.-K. Hur. Biorthogonality, Step-indexing and Compiler Cor-
rectness. In A. Tolmach, editor, ICFP. ACM, 2009

[2] D. Hillerstrom and S. Lindley. Liberating effects with rows and handlers. In
J. Chapman and W. Swierstra, editors, TyDe , pages 15-27. ACM, 2016.

[3] D. Leijen. Type directed compilation of row-typed algebraic effects. In A. D.
Gordon, editor, POPL. ACM, 2017.

[4] Sam Lindley, Connor McBride, and Craig McLaughlin. Do Be Do Be Do.
In A. D. Gordon, editor, POPL. ACM, 2017.

[5] G.D. Plotkin and J. Power. Semantics for algebraic operations. Electr. Notes
Theor. Comput. Sci., 45:332-345, 2001.

[6] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods
in Computer Science, 9(4), 2013.

[7] M. Pretnar. Inferring algebraic effects. Logical Methods in Computer Sci-
ence, 10(3), 2014.



