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Algebraic effects with handlers [9] provide a convenient mechanism for managing multiple com-
putational effects. Now, they are well-established in the research community, and are making
their way into industry-grade programming languages [10]. Originally, handlers had a dynamic
semantics, in which effect operations were handled by the dynamically closest handler. However,
this semantics leads to problems similar to those from the world of dynamic variable binding,
such as accidental effect capture. To overcome these problems, Zhang and Myers [12] and Bier-
nacki et al. [3] independently proposed two different calculi of lexical handlers, where the use of
an effect is connected to its handler via a special value (called effect instance) bound by the handler.
In their work this value was second-class in order to statically ensure that an effect instance will
never be used outside its handler. Xie et al. [11] observed that the same static guarantees can be
obtained using simpler means, just by creating a fresh abstract effect at each handler. This is similar
to how Rank-2 types are used to implement the ST monad in Haskell.

One of the possible approaches to effect instances is based on the capability-passing style [4, 5].
In this approach, the handler creates a first-class value, called a capability, which can be used to
invoke the effect. Using our syntax we can write the following simple example of the standard
reader effect.

handle ask = effect () / k => k 21 in ask () + ask ()

The handler defines the value ask which is used as a regular function in ask () + ask (). However,
once called with a unit argument, the computational effect takes place. Since it was defined using
the effect construct, its body (k 21) is evaluated in the handler’s context, but the caller’s context
can be resumed by calling the continuation k. We follow Xie et al. and use a type-and-effect system
to forbid the use of ask outside the handler. The type of ask is Unit ->[E] Int, where E is a fresh
effect variable introduced by the handler.
Inspired by examples of embedding of algebraic effects in object-oriented languages [5] we

observed that it is useful to allow other constructs besides effect to be used in the definition of a
capability. For example, effects with multiple operations can be expressed using a pair or record of
effectful functions. If we additionally permit let-definitions, we can cleanly separate the interface
of an effect from its implementation. Consider the following slightly modified standard handler of
state.

handle st =

let get = effect () / k => fn s => k s s

let put = effect s / k => fn _ => k () s

let update f = put (f (get ())) in

{ get , put , update }

return x => fn _ => x

finally c => c initState in ...

In this example, we define two primitive operations get and put using effect, and additionally
expose the function update that composes these two operations. As another example, we could
implement the yield and spawn operations for lightweight threads similar to those in [1] by using
the more primitive fork and exit, which are not exposed at all.
We tackle the problem of designing logical relations for a calculus with the discussed features.

Among the prior work on logical relations for effect handlers [2, 3, 12], only Zhang and Myers [12]
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study a calculus with effect capabilities. However, their logical relation is defined intensionally,
assuming all capabilities are of a specific shape (effect x / k => 𝑒 using our syntax), and therefore,
it does not easily scale to our calculus. An extensional definition turned out to be a significant
challenge, in part due to the unusual behavior of the variable representing the handled effect. Logical
relations are usually extended to open terms by universally quantifying over the interpretations of
variables in the environment, but the handled effect variable behaves more existentially.

During the talk we will describe two approaches to logical relations for effect capabilities. The
first approach generalizes the extension of logical relations to open terms by using existential
quantification over the interpretation of the distinguished effect variable. This introduces a new
quirk in the definition in the form of alternation of quantifiers. The second gets rid of the existential
quantifier by using a concrete, maximal semantic effect instead. Our construction of the second
model requires us to make certain restrictions on the type system. At the time of writing, we do not
know which restrictions are essential, and which could still be relaxed. However, we still believe
this model is interesting, as it also happens to be a model for the delimited control operators shift0
and reset0. This observation provides us a new, more semantic perspective on the well-known
connection between those operators and effect handlers [6–8].
The proposed relational models characterize contextual equivalence. We will present how our

logical relations work in practice by showing a few non-trivial equivalences exploiting the fact that
there exists only one capability for each effect. In particular, we can prove that a standard handler
of state which exposes only the get operation is equivalent to a standard reader handler.
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