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We present Fram, an experimental programming language designed in the tradition of ML, and which aims to
increase the ergonomics of programming with lexically-scoped handlers of algebraic effects. The key ingredient
in the design of Fram is a very general mechanism of named parameters. It was originally inspired by the
work of Lewis et al. on implicit parameters, but we observed that it can be generalized and, when integrated
with other parts of the language, it is capable of expressing many sophisticated language features, such as
records, existential types, or even functors. As a result, we obtained a useful, fully-fledged, yet relatively small
programming language.

1 BACKGROUND
Algebraic effects with their handlers originally came from the world of denotational semantics [11,
12], but quickly gained an interest among designers of programming languages. Many experimental
languages were developed (Koka [6], Links [5], Frank [8], Helium [1], and Effekt [3], just to name a
few) and now algebraic effects are progressing towards industry-grade programming languages [15].
Algebraic effects and handlers initially had a dynamic semantics similar to exceptions, where

each use of an effect is connected to the dynamically closest handler. However, this semantics is
susceptible to problems such as accidental effect capture, and makes it difficult to use multiple
instances of the same effect in a single piece of code. These problems can be solved by using lexical
handlers [2, 16], where each handler introduces a fresh instance of a given effect. On the other
hand, lexical handlers push the burden of connecting the use of an effect with its handler onto
the programmer, which—without additional language features—results in code obscured by effect
instance passing boilerplate.
Most implementations of lexical handlers [2, 4] conceal this inconvenience by some form of

implicit parameter passing, where the implicit resolution is based on the type of the effect instance.
We argue that this approach is unsatisfactory in the presence of multiple instances of the same
effect, and instead propose an alternative solution inspired by name-based implicit parameters
described by Lewis et al. [7]. We designed Fram1 with the goal of exploring this idea, and in the
process discovered that the mechanism can be generalized to subsume many additional language
features.

2 NAMED PARAMETERS
During the talk we will focus on the design of our mechanism of named parameters and how
we use it to express various language features. Similar to how polymorphism is dealt with by
the Hindley-Milner type system, our language distinguishes types (assigned to expressions) and
type schemes (assigned to variables). When a variable is used in an expression, its scheme is
immediately instantiated to type. For instance, in Fram we can define polymorphic identity by
writing let id x = x, which has the scheme {type X} -> X -> X, where {type X} binds the type
variable X. Schemes can be used to bind other sorts of names, such as the following.

Named type parameters. We could alternatively assign the scheme {X} -> X -> X to our
identity function. The difference is that now the type parameter has a specific name, which
we can use for explicit type application, as in id {X=Int} 42.

Implicit parameters. Following the approach of Lewis et al., we incorporate information
about implicit parameters into the scheme. For example, we could define a pretty-printing

1The current implementation of Fram is available at https://github.com/fram-lang/dbl.
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function pretty that accepts its configuration as an implicit parameter. The scheme for
pretty could then be something like {‘width : Int} -> Doc -> String. The argument can
be explicitly instantiated as pretty {‘width=80}, or implicitly obtained from the environ-
ment based on its name.

Named parameters. Named parameters must always be explicitly provided, but their order
does not matter. For example, a function foo : {x : Int, y : Int} -> Int can be called
by writing foo {y=13, x=42}.

Optional parameters. Optional parameters are similar to named parameters, but their in-
stantiation can be omitted, in which case a default value is taken. This is similar to optional
parameters in OCaml, but since in Fram they are part of a scheme, rather than a type, we
can avoid various awkward ambiguities. For example, we can define a function with the
following signature.
parseList : {El, ?sep : String} -> Parser El -> Parser (List El)

In case we just return parseList as a value from a function, ?sep will always be instantiated.
Our generalized approach to named parameters together with the clean separation of types

and schemes integrates with other language features in an elegant way. For one, we can allow
schemes to appear on the left-hand side of arrow types, giving us a form of Rank-N types [9, 10]
Moreover, constructors of algebraic data types can have an associated scheme, rather than a type.
This observation is particularly interesting, as it allows us to implement the following features
with next to no effort.

Existential types. The first natural consequence, familiar from languages with GADTs, is
that we can express existential types by giving constructors type parameters. For example,
we can define the following type using the Church encoding of streams.
data Stream X = Stream of {St}, St, (St -> Pair X St)

In OCaml, there is no simple way to explicitly bind an existential type in a pattern matching.
However, since St is a named type parameter, we can easily do this in Fram.
let head (Stream {St=T} (st : T) f) = fst (f st)

Records. In Fram, we can define record types using the following syntax.
data Vec = {x : Int , y : Int}

However, this is merely syntactic sugar for an algebraic data type with a single constructor
with the fields as its named parameters (data Vec = Vec of {x : Int, y : Int}), along
with automatic generation of selectors as regular methods.

Functors. If we assume a generative semantics of functors, then every use of a functor creates
a new abstract type. We can model this by functions whose codomain is an existential type.
For instance, the signature of finite sets can be expressed using the following existential
data type.
data Set E = Set of

{ T, empty : T, add : T -> E -> T, mem : T -> E -> Bool , ... }

A functor can be represented using a polymorphic function that produces an element of
type Set E.
make : { E, compare : E -> E -> Ord } -> Set E

So far, this approach is similar to how modules can be compiled out to System F𝜔 [13, 14]. In
Fram, we allow named parameters to be instantiated in aggregate from a module. Similarly,
they can be bound all at once under a given module name in a pattern matching. Therefore,
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using this encoding directly gives us the power of a ML-style module system with only
minimal overhead.

let Set { module IntSet } = make { module Int }

Interestingly, even if the module Int defines no type named E, the correct element type can
still be inferred from the context.

3 CURRENT STATUS AND FUTURE PERSPECTIVES
The Fram project is under active development. As of the time of writing, the implementation of
some of the described features is still in progress (optional parameters and encoding of functors).
While we have initial results, they have not yet been merged into the repository. On top of the
project’s research origins, it is now also used for teaching purposes. Students actively participate
in the language’s implementation and discussions about its design. As a long term student project
we are going to evaluate the language in practice—especially our approach to algebraic effects—by
implementing a bootstrapped compiler.
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