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Proposed originally by Plotkin and Pretnar, algebraic effects and their handlers are a leading-edge approach to

computational effects: exceptions, mutable state, nondeterminism, and such. Appreciated for their elegance

and expressiveness, they are now progressing into mainstream functional programming languages. In this

paper, we introduce and examine programming language constructs that back adoption of programming with

algebraic effects on a larger scale in a modular fashion by providing mechanisms for abstraction. We propose

two such mechanisms: existential effects (which hide the details of a particular effect from the user) and local

effects (which guarantee that no code coming from the outside can interfere with a given effect). The main

technical difficulty arises from the dynamic nature of coupling an effectful operation with the right handler

during execution, but, as we show in this paper, a carefully designed type system can ensure that this will not

break the abstraction. Our main contribution is a novel calculus for algebraic effects and handlers, called λHEL,
equipped with local and existential algebraic effects, in which the dynamic nature of handlers is kept in check

by typed runtime coercions. As a proof of concept, we present an experimental programming language based

on our calculus, which provides strong abstraction mechanisms via an ML-style module system.

CCS Concepts: • Theory of computation → Control primitives; Operational semantics; Program
reasoning;
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1 INTRODUCTION
The notion of algebraic effects first appeared in the works of Plotkin and Power [2004; 2001; 2002],

who studied computational effects in terms of operations, such as put and get in programming with

mutable state, or throw in programming with exceptions. More recently, Plotkin and Pretnar [2013]

proposed a framework in which effects understood as sets of operations come in tandem with

handlers: constructs that give semantics to effectful computations, generalizing the usual exception

handlers. A clear advantage and a novel feature of this approach is a separation of syntax and

semantics of effects, which turns out to be rather expressive and elegant in practical examples.

Most notably, it allows for constructing computations that rely on multiple different effects at

a time, and for precise control over how these effects interact. As a programming feature, alge-

braic effects and handlers appear in a number of experimental languages, such as Eff [Bauer and

Pretnar 2015], Frank [Lindley et al. 2017], and Koka [Leijen 2014], or as extensions of existing

languages [Hillerström and Lindley 2016; Kammar et al. 2013].

Authors’ addresses: Dariusz Biernacki, Institute of Computer Science, University of Wrocław, Joliot-Curie 15, Wrocław,

53-206, Poland, dabi@cs.uni.wroc.pl; Maciej Piróg, Institute of Computer Science, University of Wrocław, Joliot-Curie 15,

Wrocław, 53-206, Poland, mpirog@cs.uni.wroc.pl; Piotr Polesiuk, Institute of Computer Science, University of Wrocław,

Joliot-Curie 15, Wrocław, 53-206, Poland, ppolesiuk@cs.uni.wroc.pl; Filip Sieczkowski, Institute of Computer Science,

University of Wrocław, Joliot-Curie 15, Wrocław, 53-206, Poland, efes@cs.uni.wroc.pl.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
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In this paper, we tackle the issue of abstraction in languages with algebraic effects, in the sense

provided, for instance, by a module system. In a large-scale system, modules serve to provide

interfaces for abstract data types and hide the implementation details of associated functions and

the concrete representation of data. This approach is crucial, as it can ensure non-interference of

conceptually separate subparts of a large program, even when the implementation changes over

time. At the same time, by providing abstract interfaces, modules empower the programmers to

think and design at the higher levels of abstraction, which facilitates creating large systems.

In the same vein as the usual data abstraction, when designing a system in a language with

algebraic effects, one might want to declare an effect abstract, to hide implementation details from

the library’s users and only expose a limited, abstract interface. This has been recognised in a recent

technical report by Leijen 2018. We study a natural notion of exposing abstract effects through
existential quantification, and explain that this issue turns out to be not as simple as hiding the

definition of an effect from the user, since the execution of effectful programs rely on a dynamic

process of matching an operation to the appropriate handler. This process, if implemented naively,

can break the abstraction by “stealing” an effect from the inside of what was supposed to be a black

box. We show how to avoid this by a rigorous type discipline and a novel construct, effect coercions,
which extend a notion of coercions used by Saleh et al. in [2018] to coercions that have significance

at runtime.

In Section 2, we introduce our key contribution: a core calculus of abstract algebraic effects,

called λHEL. It is equipped with a polymorphic row-based type-and-effect system, in the style of

the core languages of Koka [Leijen 2017] and Links [Hillerström and Lindley 2016]. As a novel

feature, it allows for existential quantification over both types and (rows of) effects. It also provides

the mentioned effect coercions and local effects, which allow the programmer to define an effect

that is visible only within the scope of an expression. Operationally, λHEL is given a call-by-value

reduction semantics in the style of Biernacki et al.’s [2018] λH/L-calculus. In particular, an operation

is matched to its handler by the n-freeness relation, which can be explicitly controlled using effect

coercions. Indeed, λH/L’s lift is one of the available effect coercions in λHEL.
As we believe, to thoroughly study this kind of abstraction, one needs to take into consideration

the practical applicability of the constructs provided by the language, which can be assessed only

by going through a number of examples of increasing complexity, which we discuss in Section 6. To

ensure that λHEL is a reasonable core calculus for a programming language with abstract algebraic

effects, we also provide an implementation: an experimental programming language called Helium,

which provides abstraction for both types and effects via an ML-style module system. We discuss it

briefly in Section 5.

We also look at another aspect of λHEL as a core calculus, namely, execution. The reduction

semantics of λHEL is type-directed at certain points, and it relies on the complex n-freeness relation.
Thus, as a step towards an efficient implementation, in Section 3, we show a lower-level language,

which is no longer decorated with types, except for labels that assign operations and handlers

to a particular effect. We define a translation from λHEL to the untyped calculus, and prove its

correctness. In Section 4, we show a CEK-like abstract machine that executes programs in the

untyped language. Indeed, this machine is used as the execution model in our Helium interpreter.

1.1 Concrete and Abstract Algebraic Effects
We now proceed to introduce some motivating examples of both concrete and abstract algebraic

effects. In order to keep the presentation readable, we use syntactic sugar to make the expressions

of our calculus look more familiar and omit any potential coercions where they could be easily

inferred from the context. Also, note that the calculus we work with is pure, save for the algebraic

effects, and thus any state-like behaviour would have to be implemented via an appropriate effect.
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Abstracting Algebraic Effects 1:3

Algebraic Effects and Handlers. A simple effect can be defined as follows:

effect Reader A = { ask : Unit => A }

It defines an effect constructor called Reader, which is parameterized by a type a. The Reader
effect consists of a single operation ask, which can be used similarly to a function Unit -> a. We

can put an expression that uses the ask operation in a handler, which gives semantics to the effect.

For example:

handle "Hello " ++ ask () ++ ". How are you doing, " ++ ask () ++ "?" with

| ask () => resume "Dave"

| return x => x

end

To evaluate the expression above, we first try to evaluate the expression in between the handle
and with keywords. When we need a value of an application of ask, the handler takes over. Each
time, it resumes with the string "Dave", which means that it goes back to evaluating the expression,

but with the string substituted for the particular occurrence of the operation. The return clause
indicates that if no operation needs evaluating in the handled expression, that is, we handle a pure

value, we simply use this value as the overall result of the handler.

In this case, the handled expression is given the type String, but it is also given a row of effects,

[Reader String]. Such a row is a list of effects that can be invoked by a given expression. In this

case, it has only one effect.

The power of algebraic effects lies in the fact that we can easily combine different effects, and

that handlers can make use of the entire handled contexts. The latter can be illustrated with the

following two examples:

effect Error =

{ error : type T. Unit => T }

let herr = handle

| error () => 0

| return x => x

end

effect NonDet =

{ flip : Unit => Bool

; fail : Unit => Unit }

let hnondet = handle

| return x => [x]

| fail () => []

| flip () => append (resume True)

(resume False)

end

The handler herr simply throws the entire context away, since it answers with 0, but it does not
resume. That is, the entire context is replaced with 0. The handler hnondet is a handler for a

nondeterministic computation that stores all available answers on a list. Handling the operation

flip uses the context two times, one for each possible result of the nondeterministic choice. We

can freely mix the two effects within one expression, and handle it by placing two handlers:

handle

handle

if flip () then 7 else (error () + 1)

with herr

with hnondet

First, we evaluate flip (), so the hnondet handler takes over, while herr is used only in the second
resume of the operation flip. Thus, the overall result is the list [7, 0]. The effect associated with

the inner expression is given by the row [Error, Nondet] (in this case, the order of the effects in

the row does not matter).

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Our calculus supports polymorphism over rows, which means that an expression can be given a

row of effects that can be extended with additional effects depending on the context. A polymorphic

row ends with a variable, and is denoted as, for example, [Error, Nondet | r]. The fact that a
function performs effects is visible in its type, in which the arrow is decorated with the row of

effects. For example, a polymorphic iterate function could be given the following type:

Int -> (a ->[|r] a) -> a ->[|r] a

Now, we give two motivating examples for the two features that provide abstraction mechanisms

in programming with algebraic effects.

Existential Effects. Algebraic effects are appreciated for the separation of the interface of an effect

and its semantics given by handlers. However, we do not always want the interface of an effect

to be the interface provided by a module or a library, especially when we want to abstract away

the information what effect is really in use, or we want to allow the client to use the effect only

in some specific way. Leijen shows an example of this in [2018], where he marks a “filesystem”

effect as abstract, in order to hide its component operations from the clients, and ensure they only

use the built-in handler. Similarly, we can think of effects such as I/O, which are handled by the

runtime system of a language, as abstract effects without a provided handler, which the client can

only call, but never handle.

As a more complex illustration of the power of abstract effects, consider the following signature

for a Union-Find data structure, inspired by SML’s UREF signature:

type Set : type -> type

effect UF : type -> effect

val new : a ->[UF a] Set a

val find : Set a ->[UF a] a

val union : (a -> a ->[|r] a) -> Set a -> Set a ->[UF a | r] Unit

val withUF : (Unit ->[UF a | r] b) ->[|r] b

Here, we specify that in addition to the abstract type Set of disjoint sets, we also provide an abstract

effect UF, and that the usual operations of new, find and union generate this effect. Note that since

in our calculus an arrow without annotation signifies a pure function, union indeed must have

some effect annotation, since its final result is always trivial. Note that this signature abstracts from
the implementation details of UF – we have no information how many operations there are in the

effect, and what are their types. We only know that the Union-Find functions introduce such an

effect.

Since the client cannot write a handler for UF, not knowing its definition, the library also has to

provide an abstract handler. This is the role of withUF, which takes a computation that performs

the effect UF, and removes it by interpreting the underlying operations, which remain unexposed

to the user. Note that the functions new, find and union are not simply operations of UF – they

may be arbitrarily complex; indeed, with the given signature, union could not be expressed as an

operation of an algebraic effect either in our calculus, or any other algebraic effect calculi that we

are aware of.

The fact that union and withUF are polymorphic in the row of effects is important, since union
takes as its first argument a function that is used to select a new representative of the two sets, and

we want to be able to back this process with some additional effects. We elaborate on this example

in Section 6, where we detail a concrete use-case.

Local Effects. The general practice of programming with effects is that we usually want to keep

the effects local (except for some top-level effects handled by the runtime system, like I/O). This

means that we use the effects in one part of the program for efficiency or to structure the code

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Abstracting Algebraic Effects 1:5

in a better way, but we do not want them to affect other parts of the program. Thus, we seek

programming language constructs that ensure locality of an effect. Some guarantees are given by

the type system alone, which keeps track of the effects used in an expression. However, this is not

enough in the presence of effect polymorphism.

As an illustration, we revisit Example 2.4 in [Biernacki et al. 2018], and show an alternative

solution that uses local effects. Assume that the context includes an effect Tick with one operation

tick : Unit => Unit, and, for some types T1 and T2, a function val f : (T1 ->[|r] T2)
->[|r] Unit, which is polymorphic in the row of effects r. Now, we try to define a new function,

cnt_f, which counts the number of times f uses its argument. One approach would be as follows:

let cnt_f g =

handle f (fn x => tick (); g x) with

| tick () => fn n => resume () (n+1)

| return _ => fn n => n

end 0

Indeed, every time f calls g x, the tick operation is called first, which causes the counter in the

handler to increment. This function works as expected, until we use it with a g that has the Tick
effect in its row. In such a case, the tick operations in the definition of g are handled by the handler
given in the body of cnt_f, which is obviously not what we intended. What we want is to treat

the tick operation in the argument of f locally. In Helium, we can explicitly say it as follows:

let cnt_f g =

effect Tick = { tick : Unit => Unit } in

handle f (fn x => tick (); g x) with

| tick () => fn n => resume () (n+1)

| return _ => fn n => n

end 0

This guarantees that whether there is a Tick effect declared in the global context or not, the Tick
effect in the definition of cnt_f is local, hence it cannot occur in the row of g.

1.2 Implementing Abstract Effects
Now, we discuss the problem that might occur in a naive implementation of modules that enable

abstract effects. Usually, in a language with a strong type system, one can erase all the type

information, and still be sure that the program behaves well at runtime. For example, the type

system guarantees that a constructor of an algebraic data type is always paired with a match for
the same type, so one does not have to remember a constructor’s type. In particular, it is enough to

identify a constructor by its index within the algebraic data type, while match can be implemented

as a single ‘switch’. In such cases, existential types can be simply erased as well.

However, if the language provides algebraic effects, one cannot statically decide which handler

will be needed for a given expression. Thus, one common way to implement algebraic effects is for

an operation to be decorated with a piece of type information: a label that makes it possible to pair

the operation with the right handler. The fact that not all types are erased makes implementation

of existential types problematic. Consider the following example, assuming we have the Reader
effect constructor in the context. First, we define a signature of a module M:

effect E

val my_ask : Unit ->[E] Int

val my_handle : (Unit ->[E|r] a) ->[|r] a

We implement the module M as follows:

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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effect E := Reader Int

let my_ask = ask

let my_handle t = handle t () with | ask () => resume 1

| return x => x end

We use it in the following expression:

handle

handle ask () + M.my_ask () with | ask () => resume 5

| return x => x end

with M.my_handle

In the expression ask() + M.my_ask (), there are two effects in play: Reader Int and E, which
comes from the module M. Although both effects are in reality Reader Int, the latter is abstract,
so, in order to enforce abstraction barriers, we treat them as two separate effects. Hence, the value

of the call of M.my_handle in the last line is 6. But if we simply erase the types (except for effect

labels), there is no distinction between the top-level ask operation and the ask operation given by

M.my_ask, because they are both associated with Reader Int. In such a case, the handler defined

in the last line would take care of both operations, and the overall result would be 10.
To solve this problem, we propose to use effect coercions. These constructs were introduced to the

algebraic effect literature by Saleh et al. [2018] in order to make complex subtyping rules explicit

and easier to track: we use a similar notion of a coercion, but in a slightly different way. In our

example, the type system knows that E is abstract, hence should be treated as fresh with respect to

all other effects, including Reader. But, since there is another effect in the row of the expression,

we require an appropriate coercion to be placed in front of M.my_ask, which causes the evaluation

to circumvent the inner handler. We discuss the coercions used in λHEL and how they affect such

examples in Section 2.

1.3 Contributions
• We introduce the first type-and-effect system and operational semantics that accounts for

local definitions of algebraic effects and effect abstraction.
• In order to ensure type-soundness of the calculus, we employ effect coercions in a novel way

that extends sub-effecting to transitions with computational content.

• We construct an abstract-machine implementation that is correct with respect to the opera-

tional semantics.

• We provide a proof-of-concept programming language that allows the user to program with

local and abstract effects in a familiar setting of an ML-like module system.

2 CORE CALCULUS
In this section, we introduce a core calculus of algebraic effects with abstract effects and row

polymorphism, called λHEL. The calculus is based on the call-by-value λ-calculus, with a type

system that allows for polymorphic and existential abstraction over types, type constructors, effects,

and effect rows. It is an extension and generalization of the λH/L-calculus, introduced in [Biernacki

et al. 2018], where the authors consider a fragment of the type system addressed in the present

work in which the only available means of type-level abstraction is row polymorphism [Hillerström

and Lindley 2016; Leijen 2017].

2.1 Syntax
The syntax of λHEL is shown in Figure 1. We assume an infinite set Var of expression variables

ranged over by f , r , x,y, z, . . . possibly with indices and primes. Similarly, we assume a set TVar of
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Abstracting Algebraic Effects 1:7

Var ∋ f , r , x,y, . . . (variables)

TVar ∋ α, β, . . . (effect and row variables)

OpName ∋ o (operation names)

Kind ∋ κ ::= T | E | R | κ → κ (kinds)

Typelike ∋ σ , τ , ε, ρ ::= α | τ τ | τ→ρτ | ∀α :: κ . τ | ∃α :: κ . τ | (types, etc.)

⟨⟩ | ⟨ε |ρ⟩

θ ::= α :: κ .
{
δ
}

(effect declarations)

δ ::= o : α :: κ . τ ⇒ τ (operation declarations)

TCont ∋ ∆ ::= · | ∆,α :: κ | ∆,α = θ (type contexts)

Exp ∋ e ::= v | e e | e τ | ⟨c⟩ e | (expressions)

pack(τ , e) as ∃α :: κ . τ |

unpack e as α :: κ, x : τ in e |

effect α = θ in e | handleε e {h; d}
Val ∋ u,v ::= x | λ x : τ . e | Λα :: κ . e | (values)

pack(ε,v) as ∃α :: κ . τ | oετ
c ::= c · c | ε : c | ↑ε | ε ↔ ε (coercions)

h ::= o α :: κ (x : τ )/(r : τ ) ⇒ e (effect handlers)

d ::= return x : τ ⇒ e (return clauses)

ECont ∋ E ::= □ | E e | v E | E τ | ⟨c⟩ E | (evaluation contexts)

pack(τ , E) as ∃α :: κ . τ |

unpack E as α :: κ, x : τ in e |

handleε E {h; d}
VCont ∋ Γ ::= · | Γ, x : τ (variable contexts)

Fig. 1. Syntax of the calculus λHEL

type variables, ranged over by α, β, . . . , that allow for polymorphic and existential abstraction over

types, effects, rows of effects, etc. Operation names o are drawn similarly from the set OpName.

All bound variables are type- or kind-annotated.

Conventions. We assume that all variables in type and term contexts are unique, implicitly alpha-

renaming type- and term-level variables where necessary. Overlines denote (possibly empty) lists

of objects, with the syntax like κ → κ ′ denoting a right-associative chain of arrows, while σ τ
denotes a left-associative chain of (type) applications. We denote substitutions of values for term

variables (in expressions, values, etc.) with {v /x}, and substitutions of types for type variables (in

types, coercions, expressions, etc.) with {τ /α }. The substitutions are capture-avoiding and can be

extended to entire lists of terms/variables, with the implicit understanding that the lists in question

are required to be of equal lengths. Wherever the general types are assumed to be kinded, the ε
metavariable ranges over effects (i.e., general types of kind E), and ρ – over rows (those of kind R).
We use σ , τ to range over proper types (of kind T), as well as any general type where there is no

kind distinction. Type constructors are usually variables, and at any rate their kind is then present

in the rules or text.

Kinds, types, and well-formedness. The grammar of kinds includes types (T), effects (E), effect rows
(R) as well as the arrow kind. The grammar of types allows us to construct annotated arrow types,
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universal and existential types with the bound variable ranging over types of arbitrary kind, type

constructor application, and effect rows (⟨⟩ and ⟨ε |τ ⟩). 1 The well-formedness of a type is considered

in a type context ∆, which is a sequence of type variable declarations (possibly representing type

or effect constructors) and of effect variable definitions. Well-formed types, effect definitions, as

well as type (and variable) contexts are selected by the standard judgments ∆ ⊢ τ :: κ, ∆ ⊢ θ , and
⊢ ∆ (∆ ⊢ Γ), respectively, that we omit. We assume that the judgment ⊢ ∆ allows for recursive effect

declarations.

Expressions, values and coercions. Expressions Exp and values Val include the call-by-value λ-
calculus (variables are values), polymorphic abstraction and instantiation, standard operations for

packing and unpacking values of an existential type or effect, and the effect-specific constructs. In

particular, we allow for local effect definitions of the form effect α = θ in e , which binds α to the

effect declaration θ in e . Furthermore, the grammar of values includes type-instantiated operation

names oετ , associated with the effect ε , whereas the grammar of expressions includes effect-handling

expressions handleε e {h; d}, where d is a return clause of the form return x : τ ⇒ e , and h is

an effect handler for ε , that is, a finite list of operation-handling expressions. The order in the list

is irrelevant, but we assume that all operations associated with an effect are mentioned exactly

once in a given handler. An operation handler o α :: κ (x : τ )/(r : τ ) ⇒ e binds the variables x
(representing the single argument of the operation) and r (standing for resume and representing

the continuation of the operation), whereas a return clause return x : τ ⇒ e binds x .
The final components of λHEL are coerced expressions ⟨c⟩ e , where c is a coercion used to

rearrange effects in effect rows as dictated by the type system of Section 2.2, and to introduce the

corresponding behavior in the operational semantics. In particular, the coercion ↑ε corresponds
to the operator lift introduced in [Biernacki et al. 2018] to make the row polymorphism behave

well in the presence of duplicated effect labels in a row, whereas the coercion ε1 ↔ ε2 (swap)
allows us to exchange effects ε1 and ε2 even if they may not be distinct. This behavior allows us to

treat abstract effects, which may or may not be distinct from each other, in a sound manner; we

provide more explanation and illustrative examples in the following sections. Finally, the coercion

ε : c (cons) allows us to coerce deeper within an effect row (for instance to swap the second and

third effects, or to express a generalized lift that Biernacki et al. encode at a steep computational

cost), and composition of coercions allows us to push multiple atomic coercions under a cons, thus

simplifying the structure of more complex coercions.

2.2 Type-and-Effect System
Before we explore the typing rules of the system, we introduce the notions of type equivalence,

modulo which the remainder of the type system works, the notion of subtyping that we use, and

the typing rules for coercions.

Type equivalence. It is standard in row-typed systems to consider a notion of row equivalence

and work modulo that notion. In the case of algebraic effects, this usually amounts to allowing free

exchange of any distinct effects (or, more precisely, distinct effect constructors) [Hillerström and

Lindley 2016; Leijen 2017]. This is justified in the operational semantics by the fact that an operation

must match the handler for its effect – thus all handlers of other effects one might encounter on

the way are inconsequential. Clearly, this cannot generally extend to effect-kinded type variables,

as these could potentially denote an incompatible effect declaration (in other words, such exchange

would be incompatible with substitution). We can, however, find a middle ground, expressed by the

1
We use the following syntactic sugar: ⟨ε1, ε2 |ρ ⟩ stands for ⟨ε1 | ⟨ε2 |ρ ⟩⟩, whereas ⟨ε1, ε2 ⟩ stands for ⟨ε1, ε2 | ⟨⟩⟩.
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∆ ⊢ σ2 <: σ1 :: T ∆ ⊢ ρ1 <: ρ2 :: R ∆ ⊢ τ1 <: τ2 :: T

∆ ⊢ σ1→ρ1τ1 <: σ2→ρ2τ2 :: T

∆,α :: κ ⊢ τ1 <: τ2 :: T

∆ ⊢ ∀α :: κ . τ1 <: ∀α :: κ . τ2 :: T

∆,α :: κ ⊢ τ1 <: τ2 :: T

∆ ⊢ ∃α :: κ . τ1 <: ∃α :: κ . τ2 :: T

∆ ⊢ ρ :: R

∆ ⊢ ⟨⟩ <: ρ :: R

∆ ⊢ ρ1 <: ρ2 :: R

∆ ⊢ ⟨ε |ρ1⟩ <: ⟨ε |ρ2⟩ :: R

∆ ⊢ σ ≃ τ :: κ

∆ ⊢ σ <: τ :: κ

∆ ⊢ τ1 <: τ2 :: κ ∆ ⊢ τ2 <: τ3 :: κ

∆ ⊢ τ1 <: τ3 :: κ

Fig. 2. Subtyping. In ∆ ⊢ σ <: τ :: κ we assume that ∆ ⊢ σ :: κ and ensure that ∆ ⊢ τ :: κ.

following rule:

∆1 ⊢ β :: κ → E

∆1,α = θ ,∆2 ⊢ β σ #α τ

This rule states that the effect declaration α , applied to appropriate types, is compatible with any

effect constructor β – be it a definition or a type variable – as long as β is typable “before” α , i.e., in
some prefix of the context that does not contain α . If β is also an effect declaration, this just makes

for a slightly convoluted way to express the standard notion. However, when it is a type variable,

this setup ensures it can never denote α at runtime (or, that the rule is indeed compatible with

substitution).

This notion of effect compatibility leads straightforwardly to a notion of type equivalence, which

we take as the smallest congruence that is compatible with the type well-formedness rules and

includes swapping compatible effects in rows, as in the following rule:

∆ ⊢ ε1 # ε2

∆ ⊢ ⟨ε1, ε2 |ρ⟩ ≃ ⟨ε2, ε1 |ρ⟩ :: R

Note that this judgment is clearly decidable. Thus, in the interest of clarity, in the following we

work modulo type equivalence, freely identifying τ and τ ′ rather than writing ∆ ⊢ τ ≃ τ ′ :: κ, and
using a negated form of the judgment in the premises of reasoning rules.

As an example, consider an effect constructor Reader = α :: T. {ask : . unit ⇒ α }. Two instances
of this effect, say, Reader Bool and Reader Int are incompatible, and so cannot be freely exchanged

in a row. This corresponds to the intuition that the row encodes the order in which the effects

will be handled: clearly, if the handler that supplies integers were to handle an operation that

expects a boolean as a result, our calculus would not be sound! This reasoning extends to a row

⟨Reader Bool,α⟩, where α is an effect-kinded type variable formed in the context that includes the

declaration of Reader, as substitution could reduce this case to the previous one. However, if Reader
were introduced in a context where α is already present (as a locally declared effect), scoping rules

would preclude instantiation of α with Reader – and so we declare these effects compatible and

can freely exchange them in a row.

Subtyping. Subtyping, presented in Figure 2, is defined as a reflexive and transitive relation that

is compatible with the type formation rules, with the appropriate variance: quantifiers and row

constructors are covariant and the arrow type is contravariant in its first argument (and covariant

in the others) while effects are always invariant. Thus, except for the rule that allows us to “open”

an empty effect row with any well-formed row ρ the subtyping rules are fairly standard.
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∆ ⊢ ε :: E

∆ ⊢ ↑ε : ρ ▷ ⟨ε |ρ⟩ ∆ ⊢ ε1 ↔ ε2 : ⟨ε1, ε2 |ρ⟩ ▷ ⟨ε2, ε1 |ρ⟩

∆ ⊢ c : ρ ▷ ρ ′

∆ ⊢ ε : c : ⟨ε |ρ⟩ ▷ ⟨ε |ρ ′⟩

∆ ⊢ c1 : ρ1 ▷ ρ2 ∆ ⊢ ρ1 ≃ ρ2 :: R ∆ ⊢ c2 : ρ2 ▷ ρ3

∆ ⊢ c1 · c2 : ρ1 ▷ ρ3

Fig. 3. Coercion typing. In ∆ ⊢ c : ρ1 ▷ ρ2 we assume ∆ ⊢ ρ1 :: R and ensure that ∆ ⊢ ρ2 :: R.

Coercion typing. We have noted before that coercions are intended to change the effect rows

in a way that affects the operational semantics – and so beyond what we choose to express with

subtyping. Thus, the judgment of a form ∆ ⊢ c : ρ1 ▷ ρ2 expresses that a coercion c takes the row
ρ1 to the row ρ2; the rules may be found in Figure 3. As expected, the rule for the lift coercion

matches the lift operation in Biernacki et al., and the cons and composition coercions behave in the

obvious way. The interesting rule is the swap coercion, which exchanges the effects ε1 and ε2 at the
beginning of the row. Note the similarity to the rule for row equivalence presented above: the only

difference is in the lack of compatibility requirement and in the directedness of the rule (which is

arbitrary). Note that this rule can be used to exchange compatible effects, even though the rows

would then be equivalent: this is crucial to ensure compatibility under substitution.

Consider again the Reader effect and some effect-kinded type variable α :: E that is incompatible

with it. In order to coerce a row ⟨Reader Bool,α⟩ to a row ⟨α,Reader Bool⟩ we need a coercion

Reader Bool ↔ α . Similarly, if we take an open row ⟨Reader Bool|β⟩ for some β :: R, and want to

coerce it to ⟨Reader Bool,α |β⟩, we cannot simply use subtyping (as we cannot freely extend open

rows). Instead, we need to apply a coercion Reader Bool : ↑α , which adds α to the row under the
occurrence of the Reader effect. Another possibility is to use coercion composition, add α at the

front of the row, and commute it with the Reader, as follows: ↑α · α ↔ Reader Bool. We revisit this

example after considering the semantic content of coercions, to explain how the two correspond.

Expression typing. Finally, we come to the typing rules for expressions and handlers, which are

presented in Figure 4. Most of the rules are standard, the interesting ones have to do with algebraic

effects. Firstly, note that the rule for local effects adds the effect declaration to ∆, but ensures that
the return type and effect are free of the local definition, much like the rules for local memory

regions in type-and-effect systems for memory management [Tofte and Talpin 1997]. In effect this

ensures that all the occurrences of the operations of the local effect are handled, including those in

suspended computations. Secondly, the effect annotation at the operations and effect handlers has

to start with a definition (α ) applied to appropriate type arguments. This means that effect-kinded

type variables, introduced for instance by unpacking an existential effect, cannot appear in this

position – which ensures their abstract treatment. Finally, in all these rules, as in the rule for

typing an effect handler, we somewhat abuse the overline notation to ensure that the numbers of

arguments in various lists match, and that for each appropriate pair a given judgment holds.

2.3 Operational Semantics
We define the operational semantics of our calculus as a reduction semantics. The rules are presented

in Figure 6, where we first give the notion of reduction (contraction) and then define how complete

programs are evaluated (reduction relation). The first interesting thing to note is the shape of the

judgment: ∆; e → ∆′
; e ′. Similarly to the typing rules, ∆ stores the declared effects; the interesting

part, however, is its global evolution. Note the reduction rule for the local effect, which allocates α
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Abstracting Algebraic Effects 1:11

x : τ ∈ Γ

∆; Γ ⊢ x : τ / ⟨⟩

∆ ⊢ σ :: T ∆; Γ, x : σ ⊢ e : τ / ρ

∆; Γ ⊢ λ x : σ . e : σ→ρτ / ⟨⟩

∆,α :: κ; Γ ⊢ e : τ / ⟨⟩

∆; Γ ⊢ Λα :: κ . e : ∀α :: κ . τ / ⟨⟩

∆; Γ ⊢ e1 : σ→ρτ / ρ ∆; Γ ⊢ e2 : σ / ρ

∆; Γ ⊢ e1 e2 : τ / ρ

∆; Γ ⊢ e : ∀α :: κ . τ / ρ ∆ ⊢ σ :: κ

∆; Γ ⊢ e σ : τ {σ /α } / ρ

∆ ⊢ σ :: κ ∆; Γ ⊢ e : τ {σ /α } / ρ

∆; Γ ⊢ pack(σ , e) as ∃α :: κ . τ : ∃α :: κ . τ / ρ

∆; Γ ⊢ e1 : ∃α :: κ . σ / ρ ∆,α :: κ; Γ, x : σ ⊢ e2 : τ / ρ ∆ ⊢ τ :: T

∆; Γ ⊢ unpack e1 as α :: κ, x : σ in e2 : τ / ρ

∆,α = θ ⊢ θ ∆,α = θ ; Γ ⊢ e : τ / ρ ∆ ⊢ τ :: T ∆ ⊢ ρ :: R

∆; Γ ⊢ effect α = θ in e : τ / ρ

α = β :: κ .
{
δ
}

∈ ∆ o : γ :: κ ′. τ1 ⇒ τ2 ∈ δ ∆ ⊢ σ :: κ ∆ ⊢ σ ′
:: κ ′

∆; Γ ⊢ oα σσ ′
: τ1{σ / β}{σ ′ /γ }→⟨α σ ⟩τ2{σ / β}{σ ′ /γ } / ⟨⟩

α = β :: κ .
{
δ
}
∈ ∆ ∆ ⊢ σ :: κ

∆; Γ ⊢ e : τa / ⟨α σ |ρ⟩ ∆; Γ;δ {σ / β} ⊢ h : τr / ρ ∆; Γ, x : τa ⊢ er : τr / ρ

∆; Γ ⊢ handleα σ e {h; return x : τa ⇒ er } : τr / ρ

∆,α :: κ; Γ, x : τ1, r : τ2→ρσ ⊢ e : σ / ρ

∆; Γ;o : α :: κ . τ1 ⇒ τ2 ⊢ o α :: κ (x : τ1)/(r : τ2→ρσ ) ⇒ e : σ / ρ

∆; Γ ⊢ e : τ / ρ ∆ ⊢ c : ρ ▷ ρ ′

∆; Γ ⊢ ⟨c⟩ e : τ / ρ ′
∆; Γ ⊢ e : τ / ρ ∆ ⊢ τ <: τ ′ :: T ∆ ⊢ ρ <: ρ ′ :: R

∆; Γ ⊢ e : τ ′ / ρ ′

Fig. 4. Expression and handler typing. We assume ⊢ ∆ and ∆ ⊢ Γ, and ensure that ∆ ⊢ τ :: T and ∆ ⊢ ρ :: R.

globally in its contraction. This is required, since computations that refer to the local effect may

get suspended, so the effect declaration itself has to be present in the “future world” where the

suspended computation is called. At the same time, the typing discipline ensures that the effect is

actually used only within its scope. This behavior is somewhat similar to the reference allocation

in ML [Pierce 2002, Chapter 13] – although of course the effect declaration is immutable, so its

behavior should be significantly easier to model.

The other important contraction rule is handling of an operation. Following [Biernacki et al. 2018]

we express the fact that the operation is handled by its matching handler via a freeness judgment,

presented in Figure 5. When the appropriate judgment is located, the operation is found within the

handler, and the continuation gets captured and passed to the handler code as a resumption r . As
the other rules are standard or trivial, we now explore freeness in more detail.
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Freeness of effects in an evaluation context n−free(ε, E)

0−free(α,□)

n−free(α, E)

n−free(α, E e)

n−free(α, E)

n−free(α,v E)

n−free(α, E)

n−free(α, E τ )

n−free(α, E)

n−free(α, pack(τ , E) as ∃α :: κ . τ )

n−free(α, E)

n−free(α,unpack E as β :: κ, x : τ in e)

n + 1−free(α, E)

n−free(α,handleα σ E {h; d})
n−free(α, E) α , α ′

n−free(α,handleα ′ σ E {h; d})

n−free(α, E) α : n
c
⇝m

m−free(α, ⟨c⟩ E)

Transformation of n-freeness through coercions ε : n
c
⇝m

α : n
c1⇝m α :m

c2⇝ k

α : n
c1 ·c2⇝ k

α : n
c
⇝m

α : n + 1
α σ :c
⇝ m + 1 α : 0

α σ :c
⇝ 0

α : n
c
⇝m α , α ′

α : n
α ′ σ :c
⇝ m

α : n
↑α σ
⇝ n + 1

α , α ′

α : n
↑α ′ σ
⇝ n α : 0

α σ↔α σ ′

⇝ 1 α : 1

α σ↔α σ ′

⇝ 0

α : n + 2
α σ↔α σ ′

⇝ n + 2

α , β

α : n
β σ↔β σ ′

⇝ n

β , β ′

α : n
β σ↔β ′ σ ′

⇝ n

Fig. 5. Effect freeness

In the simplest case, it only checks that the effect is not handled earlier in the context via

some other handler that would catch the same effect constructor. However, freeness interacts

non-trivially with the coercions in the evaluation contexts, potentially causing some of the handlers

in the contexts to become “inert.” These are engineered to match the appropriate rules of the type

system in a way that we discuss in the following. Intuitively, the lift coercion on an effect α σ
ensures that the nearest enclosing handler for α will not handle any operation under that coercion,

while the swap coercion “exchanges” the matching handlers for the two first occurrences of the

matching effect. Like in the typing judgment, the cons coercion simply shifts these coercions to

handlers further outside the nearest enclosing ones.

In order to see the semantics in action, consider the examples from the previous section. First, con-

sider two operations, askReader Bool () and askReader Int (). Clearly, these should not be handled by the
same handler. However, if we wrote f (askReader Bool ()) (askReader Int ()) (for some binary function f),
this is what would happen, as both these operations would match the same enclosing handler! If we

use a lift coercion on the second of these, we get f (askReader Bool ()) (⟨↑Reader Bool⟩ askReader Int ()),
which, if we look carefully at the definition of freeness, ensures that the context for the second

operation will always be more free than the one for the second. In the end, this means that (barring

additional coercions) the second operation will skip past the handler that handles the first operation,
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Contraction ∆; e 7→ ∆; e

∆; (λ x : τ . e) v 7→ ∆; e{v /x} ∆; (Λα :: κ . e) τ 7→ ∆; e{τ /α }

∆;unpack pack(σ ,v) as ∃α :: κ . τ as α :: κ, x : σ in e 7→ ∆; e{σ /α }{v /x}

α = θ ∈ ∆ 0−free(α, E)

o β :: κ (x : τx )/(r : τr ) ⇒ e ∈ h vc = λ z : τr . handleα σ E[z] {h; d}
∆;handleα σ E[oα σ ′τ v] {h; d} 7→ ∆; e{τ / β}{v /x}{vc / r }

∆;handleε v {h; return x : σ ⇒ e} 7→ ∆; e{v /x}

∆; ⟨c⟩ v 7→ ∆;v ∆; effect α = θ in e 7→ ∆,α = θ ; e

Reduction relation ∆; e → ∆; e

∆; e 7→ ∆′
; e ′

∆;E[e] → ∆′
;E[e ′]

Fig. 6. Operational semantics

and be handled by the one further outside in the context. Moreover, note that this is precisely the

coercion that is required for such a composition to be well-typed, and that it is a legitimate concern

also in the case when both operations are annotated with the same effect (say, Reader Bool), but
that ought to be handled by different handlers. As pointed out in the introduction, this is a common

occurrence in the presence of existential types, and as argued in [Biernacki et al. 2018], it occurs

already in the presence of row polymorphism.

What if, for some reason, we need a set order of handling, like the one obtained above, reversed?

Biernacki et al. argue that this can be encoded in their system. However, their construction is quite

involved – and what’s worse, it does not scale to a setting with effect-kinded type variables, where

we might want to swap a concrete effect with an abstract effect. Thus, we include the swap coercion
directly in the semantics. Consider the example from the previous paragraph, but with Reader Int
handled first. Without any additional coercions, such a handler would give the interpretation to

the operation associated with the boolean type, potentially leading to an error. To avoid this, we

can place a swap coercion between the expression and the handler, as in the following:

⟨Reader Bool ↔ Reader Int⟩ f (askReader Bool ()) (⟨↑Reader Bool⟩ askReader Int ()).
As this outer coercion changes 0-free Reader effects into 1-free, and vice versa, in this case it’s the

context of the second operation (associated with Reader Int) that is 0-free – and thus would be

interpreted by the first enclosing handler. The context of the first operation, on the other hand,

would be 1-free, so the first interpretation would be skipped, bringing freeness back to 0.

In conjunction, the coercion rules provide us with a robust if somewhat complex system that

by design behaves well with substitutions – an essential characteristic for a calculus with effect

abstraction. We touch upon this in the following section, when we state the appropriate substitution

lemma.
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2.4 Type Soundness
We prove the soundness of the type system presented above via the standard combination of

progress and preservation lemmas [Harper 2016; Wright and Felleisen 1994]. We begin with the

progress property. In order to state the lemma, we first need an additional predicate that can be

used to connect the notions of freeness and the row of effects in the typing judgment. This will

allow us to express the appropriate property for expressions that are stuck due to an operation

not having a matching handler in the context – which we have to take into account, since we can

reduce under handlers. The relation is defined by the following rules:

α0 ⊆ ρ

αn ⊆ ρ

αn+1 ⊆ ⟨α σ |ρ⟩

ε , α σ αn ⊆ ρ

αn ⊆ ⟨ε |ρ⟩

We can now state the lemma that uses this notion to connect the typing of coercions to their

semantic effect. The proof follows by simple induction on the structure of coercion typing.

Lemma 2.1. If ∆ ⊢ c : ρ ▷ ρ ′ and αn+1 ⊆ ρ, then there existsm such that α : n
c
⇝m and αm+1 ⊆ ρ ′.

With this lemma, we can state and prove the progress property. Note that the unusual third

case is never encountered for closed programs, which have empty effect rows. However, this case

is crucial when reducing under an effect handler, since it is what enables the operation-handler

reduction (when n = 0).

Lemma 2.2 (Progress). If ∆; · ⊢ e : τ / ρ, then one of the following holds:
• e is a value, i.e., there exists v ∈ Val such that e = v ;
• e reduces in ∆, i.e., there exist ∆′ and e ′ such that ∆; e → ∆′

; e ′;
• e is control-stuck, i.e., there exist E, o, α , σ , τ , v and n such that e = E[oα στ v], n−free(α, E)
and αn+1 ⊆ ρ all hold.

We now turn to the preservation property. We first define the typing of evaluation contexts

∆; Γ ⊢ E : τ / ρ ⇝ τ / ρ in terms of “future-world-closed” typing of expressions:

∆; Γ ⊢ E : τ1 / ρ1 ⇝ τ2 / ρ2
△
= ∀∆′, Γ′, e . ∆,∆′

; Γ, Γ′ ⊢ e : τ1 / ρ1 ⇒ ∆,∆′
; Γ, Γ′ ⊢ E[e] : τ2 / ρ2.

We can use this definition to prove the following decomposition lemma, which follows by induction

on typing derivations, with appropriate application of standard weakening lemmas.

Lemma 2.3. If ∆; · ⊢ E[e] : τ / ρ, then there exist τ ′ and ρ ′ such that both ∆; · ⊢ e : τ ′ / ρ ′ and
∆; · ⊢ E : τ ′ / ρ ′ ⇝ τ / ρ hold.

Like the definition of our operational semantics, we split the proof of the type preservation

property into two steps. First, we show that contractions preserve typing, which is mostly standard

for a calculus with a subtyping relation and requires standard lemmas about substitution of types

(in terms and in expressions) and values (in expressions only). We show the most complex and

crucial of these, the preservation of typing judgment under substitution of types. While this lemma

is mostly standard (the only surprising part is substitution in ∆′
, which is due to the fact that the

contexts also contain effect declarations, in which α may appear), its importance is crucial, given

that types are involved in the reduction, through handlers and coercions.

Lemma 2.4 (Substitution/type/expression). If ∆,α :: κ,∆′
; Γ ⊢ e : τ / ρ and ∆ ⊢ σ :: κ, then

∆,∆′
; Γ{σ /α } ⊢ e{σ /α } : τ {σ /α } / ρ{σ /α }.

Lemma 2.5 (Preservation/contraction). If ∆; · ⊢ e : τ / ρ and ∆; e 7→ ∆′
; e ′ then ∆′

; · ⊢ e ′ :
τ / ρ.
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Preservation under the more general reduction is then simply the case of using the decomposition

lemma stated above.

Lemma 2.6 (Preservation). If ∆; · ⊢ e : τ / ρ and ∆; e → ∆′
; e ′ then ∆′

; · ⊢ e ′ : τ / ρ.

Finally, we are in a position to prove the type soundness property of the calculus, stating that

“well-typed programs don’t go wrong.” The proof is standard, save for the presence of the final

clause of the statement of the progress lemma – which is impossible for closed programs. (We write

e ↛ when there is no e ′ such that e → e ′.)

Theorem 2.7 (Type Soundness). If ∆; · ⊢ e : τ / ⟨⟩ and ∆; e →∗ ∆′
; e ′ ↛, then there exists v such

that e ′ = v .

3 UNTYPED CALCULUS AND TYPE ERASURE
In this section, we show an intermediate step towards the execution model via an abstract machine:

the untyped calculus. While λHEL is heavily decorated with types, most of the annotations are

not necessary at runtime, so they can be simply erased. The vital type information is the effect

constructor, which makes it possible to pair an operation with a handler.

We show the calculus and the type-erasure procedure. Type erasure preserves semantics of

well-typed programs, and then the abstract machine, defined in Section 4, works on terms of the

untyped calculus, realizing the semantics given in this section.

Syntax and Semantics. The syntax and semantics of the untyped calculus is given in Figure 7.

It is an untyped λ-calculus with the explicit unit value, operations and handlers (decorated with

values rather than types), the pair constructor and letp (counterparts of the pack–unpack duo),

and new (counterpart of effect). Note that the pair constructor has a value instead of a type in the

first component, while new binds a single variable instead of providing a whole effect definition.

Another new element is the set l of effect labels. The unit value together with effect labels form a

new syntactic category, simple values. The fact that in some places the syntax is restricted to values

or simple values might seem arbitrary at first, but it serves a very practical purpose: we want the

abstract machine to exactly match the reduction semantics given in Figure 7, and the less restricted

syntax would require the machine to include additional transitions, which are unnecessary for

programs coming from well-typed λHEL expressions.
The reduction semantics of the untyped calculus is very similar to the semantics of λHEL. The

reduction relation is accompanied by a context Σ, which lists allocated effect labels, and whose sole

purpose is to ensure that the label l in the contraction rule for new is fresh (when writing Σ, l we
assume that l does not occur in Σ, i.e., l is fresh with respect to Σ). Effect freeness is defined similarly

to the effect freeness for λHEL. That is, the n-freeness for the untyped calculus is preserved by all

evaluation contexts except for handlers and coercions. For handlers and coercions, the difference

is that we compare effect labels instead of effect constructors. Thus, we do not spell out the full

definition, and Figure 7 includes only a few selected rules.

Type Erasure. The type-erasing translation on types (⌊τ ⌋η ), coercions (⌊c⌋η ), and expressions (⌊e⌋η )
is presented in Figure 8. It is parameterized by η, which is a map from type variables of λHEL to
the values of the untyped calculus. Intuitively, η reveals if a given variable represents an effect

constructor (in which case its value is a variable that will be instantiated with an effect label) or

some other type (in which case the value of η is the unit value).

The procedure for types erases (that is, maps to the unit value) everything except for effect con-

structors, which are given by some type variables (intuitively, those that refer to effect definitions θ
allocated on ∆). Thus, the value for a variable α is provided by the environment η, while a type
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Syntax

s ::= l | () (simple values)

v ::= x | s | λ x . e | (l,v) | ol [s] (values)

e ::= v | (v, e) | ov [v] | e e | letp (x,y) = e in e | ⟨c⟩e | (expressions)

new x in e | handlev e{h;d}
h ::= o[x] y / r ⇒ e (handlers)

d ::= return x ⇒ e (return clauses)

c ::= c · c | v : c | ↑v | v ↔ v (coercions)

E ::= □ | (l, E) | E e | v E | letp (x,y) = E in e | ⟨c⟩E | (evaluation contexts)

handlel E{h;d}

Σ ::= l (effect contexts)

Operational semantics Σ; e 7→ Σ; e
Σ; e → Σ; e

Σ; (λ x . e) v 7→ Σ; e{v /x} Σ; letp (x,y) = (l,v) in e 7→ Σ; e{l /x}{v /y} Σ; ⟨c⟩v 7→ Σ;v

Σ;new x in e 7→ Σ, l ; e{l /x}
Σ;handlel v{h; return x ⇒ e} 7→ Σ; e{v /x}

0−free(l, E) o[x] y / r ⇒ e ∈ h vc = λ z. handlel E[z]{h;d}

Σ;handlel E[ol [s] v]{h;d} 7→ Σ; e{s /x}{v /y}{vc / r }

Σ; e 7→ Σ′
; e ′

Σ;E[e] → Σ′
;E[e ′]

Freeness of effects and transformation through coercions (selected rules) n−free(l, E)

l : n
c
⇝m

n + 1−free(l, E)

n−free(l,handlel E{h;d})

n−free(l, E) l , l ′

n−free(l,handlel ′ E{h;d})

n−free(l, E) l : n
c
⇝m

m−free(l, ⟨c⟩ E)

l : 0
l↔l
⇝ 1 l : 1

l↔l
⇝ 0

l , l ′

l : n
l ′↔l ′
⇝ n

l0 , l1

l : n
l0↔l1⇝ n

Fig. 7. Syntax and semantics of the type-free calculus

application is first stripped of its argument, which is no longer needed. Erasure for coercions simply

goes down the structure, and applies itself to the types.

To define the procedure for expressions, we first define an auxiliary function. Let C(κ) denote
the result kind of κ, with the definition given as follows:

C(κ1 → κ2)
△
= C(κ2) C(κ)

△
= κ for κ ∈ T,R, E

Then, type erasure is defined structurally on expressions, translating the related constructs of

the two calculi. The environment η is extended for recursive calls in the constructions that bind

new type variables. Note that the erasure procedure for Λ’s, pack’s, and unpack’s depends on
the kind κ of the introduced type variable α . In the case of Λ, if α is an effect constructor (that
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Erasure in coercions and types.

⌊c1 · c2⌋η = ⌊c1⌋η · ⌊c2⌋η

⌊ε : c⌋η = ⌊ε⌋η : ⌊c⌋η

⌊↑ε⌋η = ↑⌊ε⌋η

⌊ε1 ↔ ε2⌋η = ⌊ε1⌋η ↔ ⌊ε2⌋η

⌊α⌋η = η(α)

⌊τ1 τ2⌋η = ⌊τ1⌋η

⌊τ ⌋η = () in all other cases

Erasure in expressions.

⌊x⌋η = x

⌊λ x : τ . e⌋η = λ x . ⌊e⌋η

⌊Λα :: κ . e⌋η =

{
λ x . ⌊e⌋η[α 7→x ] when C(κ) = E

λ x . ⌊e⌋η[α 7→()] otherwise

⌊oετ ⌋η = o ⌊ε ⌋η [⌊τ ⌋η]

⌊pack(σ , e) as ∃α :: κ . τ ⌋η =

{
(⌊σ ⌋η, ⌊e⌋η) when C(κ) = E

⌊e⌋η otherwise

⌊e1 e2⌋η = ⌊e1⌋η ⌊e2⌋η

⌊e τ ⌋η = ⌊e⌋η ⌊τ ⌋η

⌊unpack e1 as α :: κ, x : τ in e2⌋η =

{letp (y, x) = ⌊e1⌋η in ⌊e2⌋η[α 7→y] when C(κ) = E

(λ x . ⌊e2⌋η[α 7→()]) ⌊e1⌋η otherwise

⌊handleε e {h; return x : τ ⇒ e ′}⌋η = handle ⌊ε ⌋η ⌊e⌋η{⌊h⌋η ; return x ⇒ ⌊e ′⌋η}

⌊effect α = θ in e⌋η = new x in ⌊e⌋η[α 7→x ]

⌊⟨c⟩ e⌋η = ⟨⌊c⌋η⟩⌊e⌋η

⌊o α :: κ (x : σ )/(r : τ ) ⇒ e⌋η = o[y] x / r ⇒ ⌊e⌋η[α 7→y]

Fig. 8. Erasure

is, C(κ) = E), the expression is translated to a λ-abstraction, in which the bound variable (x) is
intended to be instantiated with an effect label. Otherwise, the expression is translated to a thunk –

note that an application to a type is translated to an application to a value.
2
In the case of pack, if α

is an effect constructor, we translate the expression to a pair. The first element of the pair stores the

effect constructor given originally in the first component of the pack expression. Otherwise, we

ignore the pack construct and translate only the inner expression. Similarly with unpack, if α is

an effect constructor, we use letp to match elements of the pair. Otherwise, the expression becomes

the usual λ-abstraction applied to the packed expression.

2
Another standard approach would be to impose the value restriction in the programmer-level language and simply erase

Λ’s in the case C(κ) , E. Indeed, this is how type polymorphism is implemented in Helium.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2018.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski

ν ::= λρx .e | s | ol [s] | (l,ν ) | θ (machine value)

ρ ::= {} | ρ{x 7→ ν } (environment)

κ ::= • | ι : κ (stack)

ι ::= e
ρ
A | νA | lP | e

x ,y,ρ
L (stack frame)

π ::= • | δ : π (meta-stack)

δ ::= (µ,κ) (meta-stack frame)

µ ::= cρ | {h;d}
ρ
l (meta-stack marker)

θ ::= • | δ : θ (reified meta-stack)

Fig. 9. Syntax of the abstract machine

Correctness of Type Erasure. We write η : ∆↣ Σ to denote maps such that dom(η) = dom(∆)
and cod(η) = Σ ∪ {()}, for which it is the case that{

η(α) = () if ∆ ⊢ α :: κ and C(κ) ∈ {T,R}
η(α) ∈ l if ∆ ⊢ α :: κ and C(κ) = E

and the latter part of η is injective. Additionally, we note that the function ⌊−⌋η naturally extends

to evaluation contexts.

Lemma 3.1. Erasure distributes over decomposition, i.e., ⌊E[e]⌋η = ⌊E⌋η[⌊e⌋η].

Lemma 3.2. Ifη : ∆↣ Σ,n−free(α, E), and∆; · ⊢ E : τ1 / ⟨α σ ⟩ ⇝ τ2 / ρ, thenn−free(η(α), ⌊E⌋η).

Lemma 3.3. If ∆; · ⊢ e : τ / ρ, ∆; e → ∆′
; e ′ and η : ∆↣ Σ, then there exist Σ′ and η′ : ∆′↣ Σ′

such that η ⊆ η′ and Σ; ⌊e⌋η → Σ′
; ⌊e ′⌋η′ .

4 ABSTRACT MACHINE
Runtime systems for functional languages have been typically and most successfully modeled with

abstract machines, i.e., first-order tail-recursive transition systems [Biernacka et al. 2005; Clements

and Felleisen 2004; Clinger 1998; Cousineau et al. 1985; Felleisen 1988; Felleisen and Friedman

1986; Krivine 2007; Landin 1964; Leroy 1990; Marlow and Peyton Jones 2006; Peyton Jones 1992].

In this section we follow this tradition and present an abstract machine for the untyped calculus

of Section 3 which through the type erasure translation provides a model implementation for the

λHEL-calculus. The machine is based on the architecture of the definitional abstract machine for

the control operators shift and reset [Biernacka et al. 2005]. The definitional abstract machine for

shift and reset extends the CEK abstract machine [Felleisen and Friedman 1986], the canonical

abstract machine for the call-by-value λ-calculus, with an additional layer of stack, called the

meta-stack. The structure of the meta-stack in the abstract machine considered here is richer in

that it contains stack markers [Dybvig et al. 2007] corresponding to coercions and handlers, that

are dynamically explored in search of the right handler, whenever an operation is being handled. A

CEK-based abstract machine for algebraic effects, albeit for a different calculus and with different

design choices, has been presented in [Hillerström and Lindley 2016].

4.1 Syntax and Transitions
Syntax and configurations. The syntax of the abstract machine is presented in Figure 9. Ex-

pressions are inherited from the type-free calculus. Machine values ν include closures (λρx .e),
simple values, type-instantiated operations (ol [s]), pairs representing a concrete implementation of
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⟨e | ρ | κ | π ⟩eval (eval configuration)

⟨κ | ν | π ⟩stack (stack configuration)

⟨π | ν⟩mstack (meta-stack configuration)

⟨ol [s] | n | κ | π | ν | θ⟩op (operation configuration)

⟨θ | κ | π | ν⟩res (resumption configuration)

Fig. 10. Configurations of the abstract machine

an existential effect ((l,ν )), and reified meta-stacks representing a captured continuation used to

resume computation in operation handlers (θ ).
The machine uses an environment ρ that maps variables to machine values. The empty environ-

ment is written {}, updating an environment is written ρ{x 7→ ν }, and looking up a variable in an

environment is written ρ(x). Given an environment ρ we define a partial map ρ̂ from values to

machine values as ρ̂(x)
△
= ρ(x) and ρ̂(s)

△
= s (and undefined for other kinds of values).

A stack κ is a list of stack frames, where • represents the empty stack, and ι : κ is the result

of pushing ι on the stack κ. The stack frames e
ρ
A and νA represent the operand (an expression

coupled with its environment) and the operator (a machine value) in the call-by-value evaluation

of expression application, respectively. The stack frame lP represents the return information for

evaluating the second component of a pair, whereas the stack frame e
x ,y,ρ
L is used for evaluating

local definitions.

A meta-stack π is a list of meta-stack frames, where • represents the empty meta-stack, and

δ : π is the result of pushing δ on the meta-stack π . A meta-stack frame (µ,κ) consists of a stack

marker µ, i.e., either a coercion closure cρ or a handler closure {h;d}
ρ
l , and a stack κ. Since in

the calculi we consider we do not assume a top-level handler, it is not possible to represent the

stack as a list of frames terminated with a marker, and the meta-stack as a list of such stacks, as

e.g., in [Biernacka et al. 2005]. Instead we represent the complete control stack as a pair κ1 and
(µ1,κ2) : · · · : (µn,κn+1) : •, where µi separates κi and κi+1. A reified meta-stack θ happens to have

the same structure as a meta-stack, but it is interpreted differently, as explained later on.

The abstract machine operates in five modes, shown in Figure 10. The modes eval, stack and

mstack form the core of the abstract machine and are mostly standard [Biernacka et al. 2005] –

they cooperatively interpret expressions, stacks, and meta-stacks, respectively. The remaining

modes play an auxiliary role. A configuration ⟨ol [s] | n | κ | π | ν | •⟩op represents the process of

searching the meta-stack π for the right handler for the operation o of an effect l , using a counter n
that is suitably modified by the encountered meta-stack markers, and accumulating the traversed

meta-stack (in reversed order) in θ . When in a configuration ⟨θ | κ | π | ν⟩res, the machine resumes

the reified meta-stack θ , recursively concatenating it with the current control stack.

Transitions. The transitions of the abstract machine are presented in Figure 11 and Figure 12, and

are labeled as administrative (⇒a), reducing (⇒βi ), handler searching or context capturing (⇒o),

and context resuming (⇒r).
3
We define ⇒ as the union of all these relations. The evaluation of an

expression e starts the machine in the initial configuration ⟨e | {} | • | •⟩eval, whereas the result ν
of evaluation is unloaded from the final configuration ⟨• | ν⟩mstack. Evaluating an expression e can

3
Technically speaking, the transitions ⇒β4 and⇒β5 do not correspond by themselves to a reduction in the calculus, but

rather they trigger a terminating subcomputation that implements the reduction using the transitions⇒o for β4, and⇒r
for β5.
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e ⇒a ⟨e | {} | • | •⟩eval

⟨x | ρ | κ | π ⟩eval ⇒a ⟨κ | ν | π ⟩stack
where ν = ρ(x)

⟨λ x . e | ρ | κ | π ⟩eval ⇒a ⟨κ | λρx .e | π ⟩stack
⟨s | ρ | κ | π ⟩eval ⇒a ⟨κ | s | π ⟩stack

⟨ov ′[v] | ρ | κ | π ⟩eval ⇒a ⟨κ | ol [s] | π ⟩stack
when ρ̂(v ′) = l and ρ̂(v) = s

⟨e1 e2 | ρ | κ | π ⟩eval ⇒a ⟨e1 | ρ | e2
ρ
A : κ | π ⟩eval

⟨(v, e) | ρ | κ | π ⟩eval ⇒a ⟨e | ρ | lP : κ | π ⟩eval
where ρ̂(v) = l

⟨letp (x,y) = e1 in e2 | ρ | κ | π ⟩eval ⇒a ⟨e1 | ρ | e2
x ,y,ρ
L : κ | π ⟩eval

⟨handlev e{h;d} | ρ | κ | π ⟩eval ⇒a ⟨e | ρ | • | ({h;d}
ρ
l ,κ) : π ⟩eval

when ρ̂(v) = l

⟨⟨c⟩e | ρ | κ | π ⟩eval ⇒a ⟨e | ρ | • | (cρ ,κ) : π ⟩eval
⟨new x in e | ρ | κ | π ⟩eval ⇒β1 ⟨e | ρ{x 7→ l} | κ | π ⟩eval

where l fresh

⟨• | ν | π ⟩stack ⇒a ⟨π | ν⟩mstack

⟨lP : κ | ν | π ⟩stack ⇒a ⟨κ | (l,ν ) | π ⟩stack

⟨e
x ,y,ρ
L : κ | (l,ν ) | π ⟩stack ⇒β2 ⟨e | ρ{x 7→ l}{y 7→ ν } | κ | π ⟩eval

⟨e
ρ
A : κ | ν | π ⟩stack ⇒a ⟨e | ρ | νA : κ | π ⟩eval

⟨λρx .eA : κ | ν | π ⟩stack ⇒β3 ⟨e | ρ{x 7→ ν } | κ | π ⟩eval
⟨ol [s]A : κ | ν | π ⟩stack ⇒β4 ⟨ol [s] | 0 | κ | π | ν | •⟩op

⟨θA : κ | ν | π ⟩stack ⇒β5 ⟨θ | κ | π | ν⟩res

⟨({h; return x ⇒ e}
ρ
l ,κ) : π | ν⟩mstack ⇒β6 ⟨e | ρ{x 7→ ν } | κ | π ⟩eval

⟨(cρ ,κ) : π | ν⟩mstack ⇒β7 ⟨κ | ν | π ⟩stack
⟨• | ν⟩mstack ⇒a ν

Fig. 11. Core transitions of the abstract machine

either yield a value ν , i.e., e ⇒∗ ν , or diverge, written e ⇑, or it can get stuck, e.g., searching for a

non existing handler.

The interesting transitions in the eval mode are the ones that concern algebraic effects. In

particular, evaluating a local definition of an effect amounts to generating a fresh effect name and

binding it with the locally defined variable, where a label is considered fresh when it does not occur

in the configuration under consideration. Dealing with handlers and operations is more involved

and actually determines the overall structure of the abstract machine. When a handler expression or

a coerced expression is processed by the machine, a new meta-stack frame is created and pushed on

the meta-stack, whereas the stack is reset, which corresponds exactly to the way an abstract machine

for delimited continuations would treat a control delimiter [Biernacka et al. 2005]. Transitions from

the mstack mode correspond to an “effect-free” return of a value by a “delimited” computation.

There are two transitions from the stack mode that require some attention: an application of an
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⟨ol [s] | 0 | κ | ({h;d}
ρ
l ,κ

′) : π | ν | θ⟩op ⇒o ⟨e | ρ ′ | κ ′ | π ⟩eval
where o[y] x / r ⇒ e ∈ h

and ρ ′ = ρ{y 7→ s}{x 7→ ν }{r 7→ ({h;d}
ρ
l ,κ) : θ }

⟨ol [s] | n | κ | ({h;d}
ρ
l ,κ

′) : π | ν | θ⟩op ⇒o ⟨ol [s] | n − 1 | κ ′ | π | ν | ({h;d}
ρ
l ,κ) : θ⟩op

if n , 0

⟨ol [s] | n | κ | ({h;d}
ρ
l ′,κ

′) : π | ν | θ⟩op ⇒o ⟨ol [s] | n | κ ′ | π | ν | ({h;d}
ρ
l ′,κ) : θ⟩op

if l , l ′

⟨ol [s] | n | κ | (cρ ,κ ′) : π | ν | θ⟩op ⇒o ⟨ol [s] | m | κ ′ | π | ν | (cρ ,κ) : θ⟩op

if l : n
cρ
⇝m

⟨• | κ | π | ν⟩res ⇒r ⟨κ | ν | π ⟩stack
⟨(µ,κ ′) : θ | κ | π | ν⟩res ⇒r ⟨θ | κ ′ | (µ,κ) : π | ν⟩res

Fig. 12. Operation and resumption transitions of the abstract machine

operation that switches the mode to op and an application of a reified meta-stack that switches the

mode to res.
When the machine is in the op-mode, it searches the first handler for a given operation o (of an

effect l ) in the meta-stack for which the countern is equal 0. Whenever a handler for l is encountered
but the counter is not equal 0, it is decremented, and whenever a coercion is encountered, the

counter is modified accordingly. The auxiliary relation l : n
cρ
⇝m means l : n

c ′
⇝m for a coercion c ′

that corresponds to the coercion closure cρ .4 During the search of appropriate handler, the traversed
meta-context is being accumulated (in reversed order) and finally it is stored in the environment as

the resume argument of the operation handler. When the machine is in the res-mode, the captured

meta-stack (µn,κn) : · · · : (µ1,κ1) : • is recursively pushed frame by frame on the current control

stack given by κ and π , yielding a new control stack formed by κ1 and (µ1,κ2) : · · · : (µn,κ) : π .

4.2 Correctness
In this section we sketch the correctness proof of the abstract machine with respect to the reduction

semantics of the untyped calculus. Our approach is fairly standard and it follows quite closely

the developments presented in [Hillerström and Lindley 2016], with some variations that we find

appropriate in the case of our abstract machine. The idea is to view the configurations comprising

the core of the abstract machine, i.e., eval, stack andmstack, as expressions, and to relate transitions
on these configurations with reductions on the corresponding expressions. To this end we define

a family of decompilation functions L·M that map the eval, stack and mstack configurations to

expressions (decompilation is undefined for the remaining configurations which play only a role of

auxiliary and always terminating sub-machines):

L⟨e | ρ | κ | π ⟩evalM = LπMm[LκMs[e LρMe]]
L⟨κ | ν | π ⟩stackM = LπMm[LκMs[LνMv]]

L⟨π | ν⟩mstackM = LπMm[LνMv]

4
For simplicity, we consider the process of evaluation of coercion as a meta-function of the machine. In fact, this step require

linear time with rescpect to the size of the coercion. In Appendix we present a more realistic version of the machine, where

this process is implemented by additional machine transitions.
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where (formal definitions omitted) LκMs and LπMm yield evaluation contexts represented by κ and

π , LνMv yields a corresponding value in the calculus (recursively turning θ into a λ-abstraction
representing the captured context), and LρMe yields a substitution of values for variables as given

in ρ.
We define ⇒or as the union of ⇒o and ⇒r relations, and ⇒β as the union of ⇒βi for 1 ≤ i ≤ 7.

Then, we show some selected lemmas that identify the role of the ⇒o and ⇒r transitions as,

respectively, context capturing and context resuming. (When stating a property of a reduction

semantics configuration Σ; e , we tacitly assume that all labels occurring in e are listed in Σ – an

invariant that is obviously maintained by the reduction semantics.)

Lemma 4.1. If Σ; e → Σ′
; e ′ and Lγ M = e , where γ = ⟨ol [s]A : κ | ν | π ⟩stack, then there exists γ ′

such that γ ⇒β4⇒
∗
o γ

′ and Lγ ′M = e ′.

Lemma 4.2. If Σ; e → Σ′
; e ′ and Lγ M = e , where γ = ⟨θA : κ | ν | π ⟩stack, then there exists γ ′ such

that γ ⇒β5⇒
∗
r γ

′ and Lγ ′M = e ′.

Using these and similar lemmas covering other reduction rules, we can prove a main lemma that

gives a forward simulation result, i.e., that the abstract machine simulates the reduction semantics.

Lemma 4.3. If Σ; e → Σ′
; e ′, then for all γ such that Lγ M = e , there exists γ ′ such that γ ⇒∗

a⇒β⇒
∗
or

γ ′ and Lγ ′M = e ′.

This lemma immediately yields the following theorem that both successful as well as divergent

evaluations in reduction semantics are reflected by the abstract machine.

Theorem 4.4. If Σ; e →∗ Σ′
;v , then there exists ν such that e ⇒∗ ν and LνMv = v . If Σ; e ↑ diverges,

then e ⇑.

Since there are no infinite⇒a or ⇒or transition sequences, a converse theorem holds as well:

Theorem 4.5. If e ⇒∗ ν and LνMv = v , then for all Σ, there exists Σ′ such that Σ; e →∗ Σ′
;v ′, where

v and v ′ are equal modulo (generated) effect labels. If e ⇑, then Σ; e diverges for all Σ.

5 IMPLEMENTATION
To appreciate effect abstraction (or, actually, any kind of abstraction, such as modules or abstract

data types), one usually needs to work through a larger project, where modularity, separation of

concerns, and code reuse are essential aspects of the internal design of the system. Moreover, since

algebraic effects and handlers are a fairly novel addition to the functional programming landscape,

the pragmatics of employing them in such larger projects is still a vast area to explore. Thus, to allow

more experimentation with effect abstraction and the coercion-based semantics that we propose

in this paper, we have implemented an experimental programming language, tentatively named

Helium. The language supports advanced algebraic effects and handlers, sophisticated parametric

polymorphism (including polymorphic records and constructors of algebraic data types), and type

and effect abstraction through an ML-style module system with signatures and functors.

One (not very surprising) observation that we made when playing around with abstract effects

is that it is rather inconvenient for the programmer to insert the necessary coercions manually

– indeed, Biernacki et al. [2018] note that their lift coercion is more of a semantics-level artifact

than a surface-level construct. For this reason, Helium incorporates a notion of subtyping, which is

much more natural to work with for the programmer than explicit coercions. Some applications of

subtyping rules in type derivations can be reified as coercions during type inference, while some

can be erased altogether – a similar in spirit approach was taken by Saleh et al. [2018], although the

coercions that they propose serve a different purpose, and do not have any computational content.
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Practice shows that in this way we are able to handle reasonably large examples with no overhead

for the programmer whatsoever.

6 EXTENDED EXAMPLE
In this section, we present an extended example of a program that uses abstract algebraic effects.

Our aim is to provide a feel for how the abstraction can be used to hide unnecessary detail and

ensure that the user cannot break the contract that the implementer of the effectful algorithm relies

on. The algorithm we present is a version of Huet’s unification algorithm that uses a union-find

based disjoint set data structure in order to avoid unifying the same terms multiple times [Huet

1976]. The algorithm is adapted from Knight’s survey [Knight 1989], although in the interest of

briefness we do not implement the acyclicity check, thus allowing for infinite unifiers.
5

We consider a unification problem for terms over some signature, represented by a type con-

structor Sig : type -> type with variables represented by a type Var, given by the following

definition:

data rec Term Sig Var = Var of Var | Term of Sig (Term Sig Var)

We assume that variables can be compared for equality, and that we have two functions, fmap and

zipWith, of the following types:

val fmap : (a ->[|r] b) -> Sig a ->[|r] Sig b

val zipWith : (a -> b ->[|r] c) -> Sig a -> Sig b ->[Error | r] Sig c

The former of these is a simple generalization of map to our type constructor Sig. The latter takes
a function and two structures, and applies the combining function under the function symbol

provided that the given function symbols agree. If the symbols do not agree an error is raised, as

seen in the effect ascription of the function. Note that both the mapped function and the combiner

given to zipWith can themselves use algebraic effects, and that these are retained by the resulting

computation.

In order to implement Huet’s unification, we need a union-find based disjoint set data structure.

We have already presented its interface in the Introduction, let us recall it here:

type Set : type -> type

effect UF : type -> effect

val new : a ->[UF a] Set a

val find : Set a ->[UF a] a

val union : (a -> a ->[| r] a) -> Set a -> Set a ->[UF a | r] Unit

val withUF : (Unit ->[UF a | r] b) ->[| r] b

The idea behind this specification is that each disjoint set Set a has a representative of type a,
which is given to it at creation (new) and can be retrieved using find. Moreover, union takes a

function that determines how the representatives of two disjoint sets will be merged, and performs

the operation. Note that since unannotated arrows in λHEL are pure and the return type of union is

trivial, it has to be effectful. Likewise, in usual implementations both new and find perform some

computational effects. We capture all these effects in an abstract effect UF a, modeled in the calculus

as an existential quantifier over effects, thus hiding the actual implementation choices from the user

– in our case, the unification algorithm. The novel aspect is the presence of the handler, withUF,
which removes the UF effect from a computation. Thus, we can use the union-find data structure

locally, and expose a pure interface to the clients – a notable improvement over traditional ML,

where we could never guarantee that a computation is pure.

5
This check does not pose additional problems, but it does add some noise.
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let unify (type Sig) t1 t2 =

data rec UTerm = UTerm of Set (Option (Sig UTerm))

let rec walkTree t =

UTerm

match t with

| Var x => assoc x (fn () => new None)

| Term f => new (Some (fmap walkTree f))

end

let addAndPick a b = addToSet (a, b); a

let uniteSyms s1 s2 =

match s1, s2 with

| None, _ => s2

| _, None => s1

| Some f1, Some f2 =>

Some (zipWith addAndPick f1 f2)

end

let process p =

let (UTerm s1, UTerm s2) = p in

union uniteSyms s1 s2

in

handle addToSet (walkTree t1, walkTree t2)

with processSet process $> withAssocList $> withUF $>

handle

| return () => True

| error () => False

end

Fig. 13. Huet-style unification procedure in Helium. The $> operator composes handlers sequentially.

In addition to the union-find module above, we use some more standard, non-abstract effects. In

addition to the well-known Error (or failure) effect, in which the operation is given a polymorphic

return type to avoid having to explicitly eliminate the empty type, we define two effects that

embody common programming patterns: using a work set and a association map shared by the

computation. The WorkSet effect is isomorphic with the common writer effect, while Assoc is

obviously a particular form of state – but making these explicit cleans up the resulting unification

code immensely. Note that the assoc operation takes as arguments both the key, and the suspended

computation that would provide the value that would get associated with the key should it be

absent in the map.

effect Error = { error : type T. Unit => T}

effect WorkSet T = { addToSet : T => Unit }

effect Assoc K R V = { assoc : K, (Unit ->[|R] V) => V }

We define handlers for the work set and the association map, which we treat here as library

functions, and omit their code. The association map handler is specialized for the type of variables

in our unification problem.

val processSet : (t ->[WorkSet t | r] Unit) -> (Unit ->[WorkSet t | r] Unit) ->[| r] Unit

val withAssocList : (Unit ->[Assoc Var [| r] v | r] a) ->[| r] a

Now we can proceed to the unification procedure, presented in Figure 13. First, we define the

local representation of terms as disjoint sets, the representatives of which are either None, if it

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Abstracting Algebraic Effects 1:25

is associated with a variable, or an element of the signature, with disjoint sets as subterms. This

representation is at the crux of the algorithm, as it ensures that we do not reconsider terms that have

already been unified (and so belong to the same set). Then, we define the function that converts the

input representation to the internal one. For variables, we use the assoc operation to ensure that

all occurrences of the variable are associated with the same set, creating new ones as needed; for

function symbols, we simply create a new set and proceed down the tree using fmap. The function
has two latent effects: Assoc and UF. Next, we define the function uniteSyms, which is used to

pick the representative when uniting two disjoint sets. If one of the sets denotes a variable, we

simply pick the other representative; however, when both are function symbols, we need to ensure

that the subterms are unifiable. This is accomplished through the use of zipWith operation with a

convenience function that takes the two subterms and adds the pair to the work set of pairs that

need to be unified (and picks arbitrary one as a representative). Recall that zipWith raises an error

if the two symbols do not match, which is precisely what we want: in that case, the original terms

were not unifiable! The uniteSyms function is then used by the process, which simply calls union
on the pair of sets. Note that the function passed as the argument is quite effectful: its latent effects

include Error and WorkSet, while process itself adds the UF abstract effect to the above three.

With all these auxiliary procedures defined, completing the unification is quite straightforward:

we need to transform the input trees to the internal representation, treat the resulting pair as the

initial element of the work set for which process encodes the task to be performed, and handle the

resulting effects: Assoc and WorkSet are actually independent and we can choose either order, but

both have to be handled before we use withUF, which provides the (abstract, from this perspective)

interpretation to the effect UF. We compose these three sequentially with a (definable) operator $>,
which saves us the boilerplate of nested handle/with constructs.

This leaves us with Error – and, due to the use of the WorkSet, with no meaningful return value.

However, recall that Errorwas signaled precisely when unification failed: thus, it suffices to handle

it by treating the error operation as failure, while a return (with a trivial value) – as a success,

giving us the final result. This is encoded in the final handler of the function.

Note that we have omitted any coercions that would be necessary in the full syntax of our

calculus, as it is clear from the context which of them should appear where. We treat this form

omission as syntactic sugar that in practice allows us to write most programs without mentioning

lifting or swapping effects at all.

7 DISCUSSION
To our knowledge, the issue of abstraction in languages with algebraic effects has not been discussed

in the literature before, with the exception of a technical report by Leijen [2018] where they

are introduced, but not developed theoretically. The two mentioned languages with row-based

effects, Links [Hillerström and Lindley 2016] and Koka [Leijen 2017], are both equipped with

(undocumented) module systems, but they give only a weak form of abstraction, offering no

more than namespace management, akin, for example, Haskell [Peyton Jones 2003]. Among other

languages with algebraic effects, but whose type systems do not rely on rows of effects are Eff [Bauer

and Pretnar 2015] and Frank [Lindley et al. 2017]. Based on the related literature and the language

documentation, the two languages do not seem to offer a module system at the moment. It is a

matter of future work to investigate if the ideas shown in this work can be transferred to languages

without row-based effects.

On the other hand, Eff provides a form of abstraction via effect instances. A new instance is

created with the new keyword. The instance is a first-class value that can be associated with an

operation and a handler clause. This way, one can obtain a form of local effects. The downside of

effect instances is that in general it is not possible to statically decide which instance is associated
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with a given operation or a handler, which means that the type system is unable to keep track of

which effects are handled. To our understanding, this is in accordance with Eff’s principles, since

its type system underapproximates the set of effects used by an expression (see [Bauer and Pretnar

2014]), while row-based systems overapproximate the effects.

As seen in Section 6, the places where we need to insert coercions are very often clear from

context. This suggests an interesting direction for future research that could focus on the pragmatics

of the design of a high-level interface to the relatively low-level calculus, where coercions are

scrapped entirely.
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A ABSTRACT MACHINE WITH COERCION TRANSITIONS
In this section we provide a version of abstract machine, that have extra transitions for interpreting

coercions. Most of the machine is the same as in Section 4, so we describe only parts where they

differ.

Syntax and configurations. The syntax of the abstract machine is extended by three new syntactic

categories.

χ ::= • | σ : χ (coercion stack)

σ ::= ◦ | c (coercion stack frame)

ψ ::= (ol [s],κ, π ,ν, θ ) (coercion meta-frame)

A coercion stack χ serves as a continuation in the process of evaluation of compound coercions,

i.e., c1 · c2 and v : c , with • representing the empty coercion stack, and σ : χ representing the result

of pushing σ on the coercion stack χ . A coercion-stack frame ◦ is used to mark the stack when a

v : c is evaluated, whereas a frame c is used to sequentialize evaluation of the two sub-coercions in

c1 · c2. Additionally, the machine needs a coercion meta-frameψ which represents the state from

which the machine resumes searching a handler after a coercion has been processed.

The abstract machine needs two additional modes for interpreting coercions

⟨c | ρ | χ | l | n | ψ ⟩coerce (coercion configuration)

⟨χ | ρ | l | n | ψ ⟩cstack (coercion stack configuration)

that play similar roles as eval and stack modes during evaluation of expression.

Transitions. The new machine when encounter a coercion in the op mode, enters the coerce
mode in order to modify effect counter. We replace the last rule of transition⇒o with the following

one.

⟨ol [s] | n | κ | (cρ ,κ ′) : π | ν | θ⟩op ⇒o ⟨c | ρ | • | l | n | (ol [s],κ
′, π ,ν, (cρ ,κ) : θ )⟩coerce

Evaluating a coercion is done by an eval-continue sub-machine presented in Figure 14, with ψ
playing the role of a dump as in, e.g., the SECDmachine [Landin 1964]. These transitions implement

the relation l : n
c
⇝m in Figure 7.

Correctness. In order to establish correctness of the machine we need to prove that the sub-

machine for coercions implements the relation l : n
c
⇝m:

Lemma A.1. If l : n
c LρMe
⇝ m, then ⟨c | ρ | • | l | n | ψ ⟩coerce ⇒

∗
c ⟨• | ρ | l | m | ψ ⟩cstack.

We also have a lemma that identify the role of the ⇒oc as context capturing.

Lemma A.2. If Σ; e → Σ′
; e ′ and Lγ M = e , where γ = ⟨ol [s]A : κ | ν | π ⟩stack, then there exists γ ′

such that γ ⇒β4⇒
∗
oc γ

′ and Lγ ′M = e ′.

Rest of the proof is the same as for the machine from Section 4.
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⟨↑v | ρ | χ | l | n | ψ ⟩coerce ⇒c ⟨χ | ρ | l | n + 1 | ψ ⟩cstack
when ρ̂(v) = l

⟨↑v | ρ | χ | l | n | ψ ⟩coerce ⇒c ⟨χ | ρ | l | n | ψ ⟩cstack
when ρ̂(v) = l ′ and l ′ , l

⟨v1 ↔ v2 | ρ | χ | l | 0 | ψ ⟩coerce ⇒c ⟨χ | ρ | l | 1 | ψ ⟩cstack
when ρ̂(v1) = ρ̂(v2) = l

⟨v1 ↔ v2 | ρ | χ | l | 1 | ψ ⟩coerce ⇒c ⟨χ | ρ | l | 0 | ψ ⟩cstack
when ρ̂(v1) = ρ̂(v2) = l

⟨v1 ↔ v2 | ρ | χ | l | n | ψ ⟩coerce ⇒c ⟨χ | ρ | l | n | ψ ⟩cstack
when ρ̂(v1) = l1 and ρ̂(v2) = l2
and either l1 , l, l2 , l or n > 1

⟨v : c | ρ | χ | l | 0 | ψ ⟩coerce ⇒c ⟨χ | ρ | l | 0 | ψ ⟩cstack
when ρ̂(v) = l

⟨v : c | ρ | χ | l | n | ψ ⟩coerce ⇒c ⟨c | ρ | ◦ : χ | l | n − 1 | ψ ⟩coerce
when ρ̂(v) = l and n , 0

⟨v : c | ρ | χ | l | n | ψ ⟩coerce ⇒c ⟨c | ρ | χ | l | n | ψ ⟩coerce
when ρ̂(v) = l ′ and l ′ , l

⟨c1 · c2 | ρ | χ | l | n | ψ ⟩coerce ⇒c ⟨c1 | ρ | c2 : χ | l | n | ψ ⟩coerce

⟨◦ : χ | ρ | l | n | ψ ⟩cstack ⇒c ⟨χ | ρ | l | n + 1 | ψ ⟩cstack
⟨c : χ | ρ | l | n | ψ ⟩cstack ⇒c ⟨c | ρ | χ | l | n | ψ ⟩coerce

⟨• | ρ | l | n | (ol [s],κ, π ,ν, θ )⟩cstack ⇒c ⟨ol [s] | n | κ | π | ν | θ⟩op

Fig. 14. Coercion, and coercion-stack transitions of the abstract machine
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