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Handlers of algebraic effects aspire to be a practical and robust programming construct that allows one to

define, use, and combine different computational effects. Interestingly, a critical problem that still bars the

way to their popular adoption is how to combine different uses of the same effect in a program, particularly

in a language with a static type-and-effect system. For example, it is rudimentary to define the “mutable

memory cell” effect as a pair of operations, put and get, together with a handler, but it is far from obvious

how to use this effect a number of times to operate a number of memory cells in a single context. In this

paper, we propose a solution based on lexically scoped effects in which each use (an “instance”) of an effect

can be singled out by name, bound by an enclosing handler and tracked in the type of the expression. Such a

setting proves to be delicate with respect to the choice of semantics, as it depends on the explosive mixture

of effects, polymorphism, and reduction under binders. Hence, we devise a novel approach to Kripke-style

logical relations that can deal with open terms, which allows us to prove the desired properties of our calculus.

We formalise our core results in Coq, and introduce an experimental surface-level programming language to

show that our approach is applicable in practice.
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1 INTRODUCTION
Built on firm theoretical foundations [Plotkin and Power 2004; Plotkin and Pretnar 2013], algebraic

effects are the recent big hitter in the area of programming with computational effects [Bauer and

Pretnar 2015]. The key idea is to split a definition of an effect into two parts: a set of operations

and their handler. The programmer uses the former to construct effectful expressions; for example,

the operation throw to raise an exception, put and get to modify the content of a memory cell,

or choose and fail to model nondeterminism. Such operations, however, have no set meaning by
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themselves – it is an enclosing handler that specifies their concrete semantics. This approach opens

new avenues of modular effectful programming. If one wants to construct a computation that

makes use of two different effects, they simply use operations from both effects in the code, and

then enclose it with two handlers, one for each effect. Moreover, the programmer can define custom

handlers, yielding lightweight, bespoke effectful abstractions.

To classify these new modes of expression, languages with effect handlers usually come equipped

with a type-and-effect system [Bauer and Pretnar 2014; Hillerström and Lindley 2016], which

gives static guarantees on the effects that each expression can perform. This way, the programmer

is always aware of what can happen behind the scenes: whether a function is pure, does any

I/O, throws a particular kind of exceptions – and if all of them are always caught. Such systems

can be quite complex, and allow for features like effect polymorphism [Leijen 2014], existential

effects [Biernacki et al. 2019] (useful for combining algebraic effects with built-in effects), or

linearity [Leijen 2018] (useful for physical resource management).

With all this, algebraic effects and handlers are well on their way to becoming a de facto standard

of dealing with computational effects in non-pure applicative programming, especially since they

have already proven their worth in the wild [Bingham et al. 2018; Dolan et al. 2015; Leijen 2017a,b].

One of the final hurdles is the problem that we tackle in this paper: while programming with distinct
effects simultaneously is easy (because each handler knows which effect it should take care of), we

often want to program with different instances of the same effect, for example a number of mutable

memory cells, different sources of random values, and so on; see Section 2 for examples and a more

technical overview. In this paper, we propose a mechanism that would allow the programmer to

match operations to the intended handler more directly.

While this problem might seem innocent at first glance, its importance and difficulty is witnessed

by the fact that most of the existing implementations of languages with effect handlers address

it one way or another, but none of the solutions is entirely satisfactory. For example, an earlier

iteration of Eff [Bauer and Pretnar 2015] used to be equipped with instances as first-class values

paired with operation names and handlers. This gives the programmer a lot of expressiveness, but

it is not possible to track such instances using a type-and-effect system, since it is impossible to

statically determine which instances will be handled and when. Biernacki et al. [2019] introduced

effect coercions, which are similar to the slightly more expressive adaptors proposed later by Convent
et al. [2019]. These two solutions boil down to recognising each use of an effect by its position in

the row of effects, resulting in something akin to de Bruijn indices on the level of types, which is

rather expressive and well-behaved on the theoretical side, but quite impractical in real life. As

another example, the Links language [Hillerström and Lindley 2016] avoids the issue altogether by

explicitly disallowing two handlers for the same effect in a single context as a type-level constraint.

This severely limits expressivity, but provides the desired static guarantees.

From a technical standpoint, the problems with instances stem from the fiddly semantics of

effect handlers, which involves reifying evaluation contexts as first-class values; see Section 2 for a

more detailed overview. In addition, the more polymorphism a language allows, the more involved

the type-and-effect system must be in order to track the effects in such values, as it creates more

opportunities to smuggle effects around by instantiating universal or existential quantifiers.

In this paper, we propose a solution that is simple, practical, and expressive – andwhich still enjoys

a static type-and-effect discipline. Building on the insight that coercions/adaptors correspond very

closely to the structural rules of intuitionistic logic, we use variables to denote the various instances

of the effects visible in a given evaluation context. The use of variables, complete with lexical

scoping rules, provides a notion of instances that is easy to grasp intuitively and fits well with the

functional programming paradigm. Section 3 defines the syntax and type system of our calculus.
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We furnish our calculus with two operational semantics, which we call open and generative
respectively. The first one, defined in Section 4, closely follows the understanding of instances as

variables, bound by a handler or a 𝜆-abstraction, and performs reductions under variable-binding

handlers using standard capture-avoiding substitution. The second one, defined in Section 5, is

closer in spirit to the dynamically allocated instances of Eff. It turns out that each approach has

strengths and weaknesses. In particular, while the first semantics is more intuitive, it is difficult to

implement efficiently, and does not scale to some advanced features of the type-and-effect systems

actually used for programming with algebraic effects, namely polymorphic effect signatures. On

the other hand, the dynamically allocated instances are difficult to think about in intuitive terms,

even though they scale well and are easy to implement efficiently. Thus, in Section 6, we relate the
two: we show that in the absence of the advanced modes of polymorphism, the two semantics are

equivalent. This means that we may often reason about our programs intuitively using the open

semantics, and actually compute using the more robust and efficient generative semantics.

Since this equivalence does not hold in general, we use types to ensure that the two semantics

coincide for programs that are well-typed without the advanced modes of polymorphismmentioned

above. To this end, we introduce a novel Kripke-style logical relation that bridges the gap between

the two semantics, building on the work of Biernacki et al. [2018]. An interesting technical challenge

stems from the fact that one of the semantics reduces open terms (which might be given open

types), thus proscribing the usual tactic of closing-off of the free variables with arbitrary matching

substitutions. In order to solve this problem and provide a correct relational interpretation, we use

a somewhat complex Kripke structure that makes it possible to track the evolution of free variables,

and ensure that they are appropriately closed by the evaluation contexts, thus allowing us to relate

computations in the open semantics to computations in the generative semantics. To the best of

our knowledge, this is the first logical relation that uses the Kripke worlds in such a way, which

by itself is a technical contribution of this paper. We also provide a logical relation that justifies

parametricity of the fully-fledged polymorphic calculus under the generative semantics; this is

more standard, following the approach to delimited control of Biernacki et al. [2018], but certain

aspects of the relation are simpler and more uniform than in the previous attempts.

A matter that we consider with equal attention is the practical angle of the proposed calculus,

that is, if it is possible to build a usable programming language on top of it. Since instances have

proven elusive and hinging on minor, seemingly unrelated details of the type system, such a

logical-relation-oriented design of a programming language appears to be crucial to provide the

coveted strong guarantees, especially in the nontrivial aspect of coupling effects and polymorphism.

Meanwhile, one should not forget that the primary goal of instances is to give the programmer

a handy tool to manage effects in a program, so the question remains if a language based on the

proposed calculus can actually be more convenient than, say, working with coercions/adaptors. In

practice, such issues can be evaluated only by going through a number of examples. For this, we

implement an experimental programming language and show a couple of examples in Section 7.

The goal of our implementation is to provide a system of instances with a minimal overhead, in

which the management of instances is kept implicit as much as possible, especially if there is only

one instance of a particular effect in scope.

Our contributions offer some more general insights into operational semantics and type-and-

effect systems for algebraic effects and handlers. For example, we do not need row types in our

calculus, as finite sets of (instances of) effects are sufficient – in our view, such an approach is easier

to grasp by the programmer and is more modular. The results can also be extended to alternative

approaches to effect handlers. A thorough inspection of our logical relation reveals more permissive

conditions on where one can allocate an instance of an effect – in particular, it does not have to

be a handler, as long as there are no effect abstractions between the binder and the handler. This

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 48. Publication date: January 2020.



48:4 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski

observation readily allows one to generalise our results to languages with shallow handlers, such

as Frank [Convent et al. 2019], in which it is the recursive structure of a function that should carry

an instance annotation rather than the short-lived handler inside the function.

We note that the concept of lexically scoped effects is not new in itself, as it goes back at least to

Birkedal et al.’s [1996] regions for mutable store. In the context of effect handlers, Brachthäuser

et al. [2018] use lexical scoping in their Java library, which, however, is not equipped with a type-

and-effect system. Moreover, they concentrate solely on the implementation, and do not provide

a core calculus or any metatheoretic results. Zhang and Myers [2019] solve a related problem

of ensuring parametricity of effect polymorphism, which is subsumed by our solution. However,

Zhang and Myers’ calculus relies on certain restrictions on types and effects that prevent it from

scaling directly to type-and-effect systems used in practice.

The paper is accompanied by a surface-level language, based on the implementation by Biernacki

et al. [2019].
1
Moreover, we formalise our calculus and meta results in Coq.

2

Contributions
• We introduce a core calculus (syntax and a type-and-effect system) with instances of algebraic

effects, inwhich an instance is effectively a lexically scoped variable. It is a first such calculus in

“direct style” (that is, similar to the core calculi of Koka [Leijen 2017c] and Links [Hillerström

and Lindley 2016]), as opposed to the previous “handler-passing” approach [Brachthäuser

et al. 2018; Zhang and Myers 2019].

• We compare two styles of operational semantics for lexically scoped effects: open, which is

more natural, but requires reduction under instance-variable-binding handlers, and generative,
in which no such reductions occur, but the semantics is much less intuitive.

• We show that if we restrict type and effect polymorphism to expressions (disallowing poly-

morphic operations), the two semantics are equivalent for well-typed programs.

• We introduce a novel approach to Kripke-style logical relations that allows us to reason about

the open semantics, and prove type soundness and the equivalence of the two semantics.

• Using more standard techniques, we prove parametricity under the generative semantics.

• We formalise our calculus, the two operational semantics, and the logical relations in Coq.

• We introduce an experimental programming language that allows one to program with effect

instances in a practical and type-safe manner.

2 BACKGROUND: WHICH EFFECT A HANDLER HANDLES?
In this section, we give an informal overview of the operational semantics of (deep) effect handlers.

Then, we explain why we believe that the problem of instances is not trivial. For a more slow-paced

but in-depth introduction to handlers, consult, for example, a tutorial by Pretnar [2015].

Roughly speaking, effect handlers are a form of delimited control operators generalising exception

handlers, in particular those with the additional continuation branch [Benton and Kennedy 2001].

Indeed, effect handlers are closely related to the shift0/reset control operators [Forster et al. 2017;

Piróg et al. 2019]. The main difference is that in the case of handlers, the control effect is interpreted

by the delimiter and not the point where the continuation is captured.

In this paper, we consider the left-to-right call-by-value setting. Operations can be used as

single-argument functions, but applying them to a value makes the evaluation stuck, except when

it happens within a handler that can interpret this particular operation. For illustrative purposes,

we write throw, ask, etc. for operations in this section, while later on in the paper, we use a more

1
Available at https://bitbucket.org/pl-uwr/helium/src/popl20.

2
Available at https://bitbucket.org/pl-uwr/aleff-lex.
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condensed notation. The syntax for a handler is handle 𝑒 {ℎ; 𝑟 }, where 𝑒 is the handled expression,
which can use the operations from the effect interpreted by the handler, 𝑟 is a return clause of the

form return 𝑥 . 𝑒𝑟 , which binds a variable 𝑥 inside the expression 𝑒𝑟 , while ℎ is a list of clauses of the

form op 𝑥, 𝑘 . 𝑒ℎ , each interpreting one operation op from the effect, where the variable 𝑥 stands for

the value of the argument of the operation, 𝑘 is the captured continuation, while 𝑒ℎ interprets the

entire handled expression. The following reduction rules explain the basic operational semantics of

handlers, where 𝐸 is an evaluation context, 𝑣 is a value, and 𝑒 is an expression:

handle 𝑣 {ℎ; return 𝑥 . 𝑒𝑟 } → 𝑒𝑟 {𝑣 /𝑥}
handle 𝐸 [op 𝑣] {ℎ; 𝑟 } → 𝑒ℎ{𝑣 /𝑥}{𝝀 𝑧. handle 𝐸 [𝑧] {ℎ; 𝑟 } /𝑘} where op 𝑥, 𝑘 . 𝑒ℎ ∈ ℎ

Thus, the result of handling a value is specified by the return clause, which can depend on this

value. The result of handling an expression with an operation at the evaluation position is given

by the value of the expression 𝑒ℎ defined in the appropriate clause in the handler, which can use

the value of the argument of the operation and the captured continuation (a “resumption”). The

continuation is delimited by the handler, and accepts values to be put in place of the operation call.

The expression 𝑒ℎ may use the resumption, but it does not have to. For example, consider an

effect with one operation throw, modelling a single exception. Then, to obtain the behaviour of

exceptions, we can define a handler that simply discards the resumption and replaces the entire

handled computation with a value:

handle 2 + throw () {throw (), 𝑘 . 42; return 𝑥 . 𝑥 } → 42

We can also continue the evaluation using the resumption. For example, consider the Reader effect,

in which the operation ask is used to retrieve some ambient value. For this, we useℎ
△
= ask (), 𝑘 . 𝑘 42

and 𝑟id
△
= return 𝑥 . 𝑥 :

handle ask () + ask () {ℎ; 𝑟id} →∗ handle 42 + ask () {ℎ; 𝑟id} →∗
84

We can also use the resumption a number of times, for example to model nondeterminism equipped

with the operation pick, which takes as its argument a list of possible values. We can define a

handler that collects all possible results of the entire computation on a list as follows:

handle pick [1, 2] + pick [10, 40] {pick 𝑥𝑠, 𝑘 . concatMap 𝑘 𝑥𝑠 ; return 𝑥 . [𝑥]} →∗ [11, 41, 12, 42]
Another standard example is the effect of a single mutable memory cell. Its signature consists of

two operations, put and get, which can be interpreted using the following handler:

{get (), 𝑘 . 𝝀 𝑠 . 𝑘 𝑠 𝑠 ; put 𝑠 ′, 𝑘 . 𝝀 𝑠 . 𝑘 () 𝑠 ′; return 𝑥 . 𝝀 𝑠 . 𝑥 }

To program with a number of distinct effects, we simply use the operations that we need, and

put the expression in two nested handlers:

handle handle ask () + throw () {ask (), 𝑘 . 𝑘 42; 𝑟id} {throw (), 𝑘 . 43; 𝑟id} →∗
43

As specified by the reduction rules, each handler deals with the operations that it knows how to

interpret. The situation becomes more ambiguous if we use the same effect twice:

handle handle ask () + ask () {ask (), 𝑘 . 𝑘 42; 𝑟id} {ask (), 𝑘 . 𝑘 43; 𝑟id}

According to the reduction rules above, the behaviour of this program is not deterministic, as each

handler can claim the ask operations. To make the semantics deterministic and more systematic,

virtually all implementations of existing languages assume that by default it is the innermost

handler that interprets each matching operation. It is quite arbitrary, and (without some additional

language constructs) it makes it difficult to work with two distinct ambient values in the example

above, and different instances of the same effect in general.
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One ad hoc solution would be to use two different effects with similar signatures. But this can be

done only if all the instances can be statically determined, which is not possible, for example, when

writing a library code, which should work with all possible clients, no matter how many instances

they need; see Section 7 for an example of a tiny library for the mutable state cell effect. Thus, we

need a way to distinguish between different instances of the same effect, and this paper explores

the simple idea of naming each instance, both the handler and the operations. With this, one can

define the following program:

handle𝑎 handle𝑏 ask𝑎 () + ask𝑏 () {ask (), 𝑘 . 𝑘 42; 𝑟id} {ask (), 𝑘 . 𝑘 43; 𝑟id} →∗
85

Using names, however, turns out to be surprisingly delicate. Consider the following example, which

uses an effect with a single operation op, where 𝐸 is an evaluation context, 𝑟 is arbitrary, and

ℎ
△
= op 𝑥, 𝑘 . 𝑘 (𝝀 (). 𝑘 (𝝀 (). ())):

handle𝑎 𝐸 [op𝑎 () ()] {ℎ; 𝑟 } →∗ handle𝑎 𝐸 [handle𝑎 𝐸 [()] {ℎ; 𝑟 }] {ℎ; 𝑟 }

Since the resumption captures the entire evaluation context together with the handler, we managed

to duplicate it. Thus, if 𝑎 is an entity that is static or dynamically-generated earlier in the program,

we seem to be back where we started: we have two nested handlers, each for the same effect and

the same instance.

The solution that we adopt in this paper is to name instances with variables, which are bound by

handlers. This way, operations are lexically scoped, so no ambiguities occur, but there is a price:

the naive extension of the operational semantics (that is, the open semantics defined in Section 4)

reduces expressions under binders. This, especially in the presence of parametric polymorphism, is

a walk on thin ice. To illustrate the subtleties, let us reveal that if we employ the naive semantics,

the ice breaks when we allow for polymorphic types of operations. This can be alleviated by a more

involved operational semantics (the generative semantics in Section 5), but the equivalence of the

two semantics in the basic setting seems to require rather heavyweight relational machinery.

3 CORE CALCULUS: SYNTAX AND TYPES
In this section, we introduce the syntax and type-and-effect system of our core calculus. We actually

introduce two calculi: one with type and effect polymorphism available only in expressions, and its

extension in which polymorphism is available also in signatures specifying types of operations. The

latter form of polymorphism is not only useful in real-life programming (the most basic example is

the throw operation, which in the latter system can be given the signature ∀𝛼 :: T. unit ⇒ 𝛼), but

it also adds significant power of expression [Piróg et al. 2019], which means that it is not a feature

that can always be safely omitted for the sake of brevity of presentation. Our two calculi have the

same syntax of terms and types, and the difference between them is that the latter has a couple of

additional typing rules, marked with (★).
To avoid clutter in the presentation, we assume that each effect consists of only one operation,

called do, which is not an uncommon formulation [Piróg et al. 2019; Zhang and Myers 2019]. In

our case, the operational semantics couples an operation with the right handler using an instance,

so the name of the operation does not really matter, while having a number of operations in an

effect is obviously desired in the surface-level language, but is usually orthogonal to the features

that one wants to capture in a core calculus; see the discussion in [Piróg et al. 2019].

The peculiarity of our calculus is the presence of instances. Each occurrence of the operation

is tagged with a variable that specifies the handler in the evaluation context that is supposed to

interpret the operation. Handlers, on the other hand, are binders, so that an instance is local to the

handled expression. In the case of library code that is not in a handler, one can use an instance
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TVar ∋ 𝛼, . . . (type variables)

IVar ∋ 𝑎, 𝑏, . . . (instance variables)

Var ∋ 𝑓 , 𝑘, 𝑥,𝑦, . . . (variables)

Kind ∋ 𝜅 ::= T | E | S (kinds)

Typelike ∋ 𝜎, 𝜏, 𝜀 ::= 𝛼 | unit | 𝜏→𝜀𝜏 | ∀𝛼 :: 𝜅. 𝜏 | ∀𝑎 : 𝜎. 𝜏 (types, effects, signatures)

| 𝜄 | 𝜀 · 𝜀 | 𝑎 | 𝜏 ⇒ 𝜏

Val ∋ 𝑢, 𝑣 ::= 𝑥 | () | fun 𝑓 𝑥 . 𝑒 | 𝚲𝛼 . 𝑒 | 𝝀 𝑎. 𝑒 | (values)

Exp ∋ 𝑒 ::= 𝑣 | let𝑥 = 𝑒 in 𝑒 | 𝑣 𝑣 | 𝑣 ∗ | 𝑣 𝑎 | do𝑎 𝑣 | handle𝑎 𝑒 {ℎ; 𝑟 } (expressions)

ℎ ::= 𝑥, 𝑘 . 𝑒

𝑟 ::= return 𝑥 . 𝑒

Fig. 1. Syntax of the calculus

abstraction, which can be instantiated with any instance bound by a handler later on, when the

library code is actually used.

Syntax. We present the syntax of terms and types in Figure 1. We assume infinite sets of variables

that stand for types, effects, and signatures (TVar), instances (IVar), and values in terms (Var).

Note that instance variables form a separate syntactic category from term-level variables, and by

themselves do not form expressions. This entails that even though one can abstract over instances

and pass them as arguments to functions, they never mix with actual expressions, hence one cannot

perform any run-time computation on instances.

There are three kinds in the calculus: types (T), effects (E), and signatures (S). In the core calculus,

one does not declare effects (in contrast to, e.g., [Biernacki et al. 2019]), and signatures play a role

similar to type schemes in the Hindley–Milner type system: kept in the context, they describe the

(possibly polymorphic) type of a particular instance, which is instantiated every time the operation

is used. Note that there is no kind for instances: in the syntax and type system of the core calculus,

instances exist only as variables coupling operations and handlers, and are never instantiated with

anything else than other instance variables (this is no longer the case in the generative operational

semantics in Section 5, which needs some additional syntactic elements).

There are nine constructors of type-level objects. We keep them in a single syntactic category

for efficiency of presentation; for example, the universal quantifier for typelikes, ∀𝛼 :: 𝜅. 𝜏 , is used

both in types and signatures. By convention, the variable we use provides a hint of the object’s

kind – we use 𝜏 for types and typelikes of any kind, 𝜀 for effects, and 𝜎 for signatures – while the

well-formedness relation is made precise in Figure 2, where it is defined in two contexts: Δ, which
assigns kinds to type variables, and 𝑋 , which is a set of available instance variables.

The proper types are constructed from: type variables of kind T, the base type unit, arrow
type 𝜏→𝜀𝜏 (where 𝜀 is the effect that may occur when the function is applied to an argument),

universal quantifier for typelikes ∀𝛼 :: 𝜅. 𝜏 (which provides both type and effect polymorphism in

expressions), and instance quantifier ∀𝑎 : 𝜎. 𝜏 (which describes expressions that are parametric

in an instance of the given signature). The effects we considered are formed by the empty effect 𝜄

(which is the effect of pure computations), effect composition 𝜀 · 𝜀, instance variables and type

variables of kind E. While the syntax forms binary trees, we implicitly work up to a type equivalence
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Well-formedness of types. Δ;𝑋 ⊢ 𝜏 :: 𝜅

𝛼 :: 𝜅 ∈ Δ

Δ;𝑋 ⊢ 𝛼 :: 𝜅 Δ;𝑋 ⊢ unit :: T
Δ;𝑋 ⊢ 𝜏1 :: T Δ;𝑋 ⊢ 𝜀 :: E Δ;𝑋 ⊢ 𝜏2 :: T

Δ;𝑋 ⊢ 𝜏1→𝜀𝜏2 :: T

Δ, 𝛼 :: 𝜅;𝑋 ⊢ 𝜏 :: T

Δ;𝑋 ⊢ ∀𝛼 :: 𝜅. 𝜏 :: T

Δ;𝑋 ⊢ 𝜎 :: S Δ;𝑋 ⊎ {𝑎} ⊢ 𝜏 :: T

Δ;𝑋 ⊢ ∀𝑎 : 𝜎. 𝜏 :: T

Δ;𝑋 ⊢ 𝜄 :: E
Δ;𝑋 ⊢ 𝜀1 :: E Δ;𝑋 ⊢ 𝜀2 :: E

Δ;𝑋 ⊢ 𝜀1 · 𝜀2 :: E

𝑎 ∈ 𝑋

Δ;𝑋 ⊢ 𝑎 :: E

Δ;𝑋 ⊢ 𝜏1 :: T Δ;𝑋 ⊢ 𝜏2 :: T
Δ;𝑋 ⊢ 𝜏1 ⇒ 𝜏2 :: S

Δ, 𝛼 :: 𝜅;𝑋 ⊢ 𝜏 :: S

Δ;𝑋 ⊢ ∀𝛼 :: 𝜅. 𝜏 :: S
(★)

Fig. 2. Well-formedness of types

relation that ensures that (E, ·, 𝜄) is a free idempotent, commutative monoid – in other words, a

finite set. We choose this presentation, rather than an explicit collection of instances (which would

be more akin to, say [Talpin and Jouvelot 1994]) due to the presence of effect variables, which

themselves stand for entire sets of instances. Nonetheless, the notion of set-like effects makes

our calculus much closer to those considered in other areas of effectful programming than the

row-based systems commonly found in effect handler literature [Hillerström and Lindley 2016;

Leijen 2014]. In particular, the effect 𝑎 ·𝛼 · 𝛽 , where 𝑎 is an instance variable, while 𝛼 and 𝛽 are effect

variables is a well-formed effect, while rows allow at most one effect (row) variable. Signatures are

constructed using the bold arrow 𝜏 ⇒ 𝜏 and the type variables of kind S, possibly preceded by the

universal quantifier for type-level objects in the (★) variant of the calculus.
Term-level values are given by variables, the base type value (), and three different abstractions.

The first one, fun 𝑓 𝑥 . 𝑒 , is a recursive function 𝑓 with a formal argument 𝑥 and a body 𝑒 . We need

recursive functions, because otherwise the type system would make both operational semantics

always terminate, but we still use the usual notation 𝝀 𝑥 . 𝑒 as syntactic sugar for non-recursive
functions. Next, we use 𝚲𝛼 . 𝑒 to abstract over typelikes of any kind. Finally, we have the instance

abstraction, 𝝀 𝑎. 𝑒 . Note that since instance variables form a separate syntactic category, instance

abstractions are always distinguishable from the sugar for 𝜆-abstractions. Other expressions in-

clude let-expressions, applications corresponding to the respective abstractions (we use type and

effect instantiation in the style of Ahmed [2006]), the do operation, and handlers. Arguments in

applications and operations are values, in the style of fine-grained call-by-value [Levy et al. 2003].

Since there is only one operation, the body of each handler consists of one clause for the operation

and the return clause, that is, it is of the shape {𝑥, 𝑘 . 𝑒 ; return 𝑥 . 𝑒 ′}. Both operations and handlers

are decorated with variables coming from IVar. Importantly, a handler binds this variable inside

the handled expression, that is, in the expression handle𝑎 𝑒 {ℎ; 𝑟 }, the instance variable 𝑎 is bound

in 𝑒 , where it can occur as a subscript of the operation or as an argument to an instance abstraction.

Note that we also consider non-binding handlers in Section 5, but we formulate them as a separate

syntactic form.
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Subtyping. The set-like structure of effects induces the natural notion of extension ordering,

which corresponds to set inclusion. This induces a subtyping relation on types, effects and signatures,

whichwewriteΔ;𝑋 ⊢ 𝜏 <: 𝜏 . The extension orderingmentioned above states thatΔ;𝑋 ⊢ 𝜀1 <: 𝜀1 · 𝜀2
for any 𝜀2 well-formed in Δ and𝑋 . We close this rule with respect to type and effect formation rules,

with the usual contravariance on the left-hand side of the arrow, as well as the type equivalence

relation described above. By design, we do not allow (nontrivial) subtyping of signatures. As the

rules are fairly standard, we elide them in this presentation.

Signature instantiation. Effect signatures can be instantiated as a pair of a type of the argument

and a result type of the operation. This is captured by the relation Δ;𝑋 ⊢ 𝜎 { 𝜏1 ⇒ 𝜏2, which is

defined below. As with the well-formedness, (★) marks the rule that we add when considering the

calculus with polymorphic signatures. Note that without it, the relation becomes trivial, but overall

this relation gives us a uniform and judgemental way of expressing the two cases.

Δ;𝑋 ⊢ 𝜏1 ⇒ 𝜏2 { 𝜏1 ⇒ 𝜏2

Δ;𝑋 ⊢ 𝜏 :: 𝜅 Δ;𝑋 ⊢ 𝜎{𝜏 /𝛼} { 𝜏1 ⇒ 𝜏2

Δ;𝑋 ⊢ ∀𝛼 :: 𝜅. 𝜎 { 𝜏1 ⇒ 𝜏2
(★)

Typing relations. We give the typing rules of our calculus in Figure 3. The relations are defined in

three contexts: Δ assigns kinds to type variables that are in scope, much like in the well-formedness

relation, Θ assigns signatures to instance variables, and Γ assigns proper types to term variables.

Note that, in contrast to the previous judgements, we need to know what signature is associated

with a given instance variable: when this knowledge is not necessary (as in the premises that

mention well-formedness, subtyping and signature instantiation), we take dom(Θ) as the set of
instance variables in scope. Following the fine-grained call-by-value approach, a value is assigned

a type, while an arbitrary expression has both a type and an effect. Handlers are annotated with a

signature that they handle, as well as the type and effect of the resulting computation.

The rules for the constructs that do not really deal with effects are as usual in polymorphic

lambda-calculi with kinds, except for the rather obvious propagation of effects, so we do not discuss

them in detail. As for the constructs specific to effects, the type of an instance abstraction is, not too

surprisingly, the quantifier for instances. Note that this yields a very limited form of a dependent

product, since the instance variable 𝑎, even though not a value itself, may occur both as a part of

the expression 𝑒 , and as a part of its type 𝜏 . We extend the purity restriction convention (which

generalises the staple value restriction, cf. the rule for type abstraction) to this case, to avoid

potential issues with instance variables escaping their scope.

The type of do𝑎 𝑣 is given by instantiating the signature associated with the instance variable 𝑎.

The handling construct is typed using the judgement for handlers: note how the signature 𝜎

mediates between the typing of the handler and the instance 𝑎 introduced for the scope of the

effectful expression, and that 𝑎 is clearly disjoint from 𝜀, as it may not appear in Θ. Finally, the rules
for typing the handlers are rather innocent: the rule for the simple signatures is standard, while

the rule for the polymorphic signatures matches the standard rule for polymorphic abstraction.

4 EVALUATION UNDER BINDERS: THE OPEN SEMANTICS
We begin the discussion of the dynamic semantics of our calculus with the open semantics, where

we treat handlers as binders and reduce accordingly, applying capture-avoiding substitution as

needed. We believe that this is an intuitively natural approach to the operational semantics, as

no additional semantic artefacts are necessary. At the same time, the semantics is bound to be

nontrivial, since reductions under handlers are now reductions under binders, and the binding

occurrences can be captured as resumptions. Note also that bound variables might escape their

scope and become globally free as a result of reduction of the handler (both in case of return and
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Typing values. Δ;Θ; Γ ⊢v 𝑣 : 𝜏

𝑥 : 𝜏 ∈ Γ

Δ;Θ; Γ ⊢v 𝑥 : 𝜏 Δ;Θ; Γ ⊢v () : unit

Δ; dom(Θ) ⊢ 𝜎 :: S Δ;Θ, 𝑎 : 𝜎 ; Γ ⊢ 𝑒 : 𝜏 / 𝜄
Δ;Θ; Γ ⊢v 𝝀 𝑎. 𝑒 : ∀𝑎 : 𝜎. 𝜏

Δ; dom(Θ) ⊢ 𝜏1→𝜀𝜏2 :: T Δ;Θ; Γ, 𝑓 : 𝜏1→𝜀𝜏2, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 / 𝜀
Δ;Θ; Γ ⊢v fun 𝑓 𝑥 . 𝑒 : 𝜏1→𝜀𝜏2

Δ, 𝛼 :: 𝜅;Θ; Γ ⊢ 𝑒 : 𝜏 / 𝜄
Δ;Θ; Γ ⊢v 𝚲𝛼 . 𝑒 : ∀𝛼 :: 𝜅. 𝜏

Typing expressions. Δ;Θ; Γ ⊢ 𝑒 : 𝜏 / 𝜀

Δ;Θ; Γ ⊢v 𝑣 : 𝜏

Δ;Θ; Γ ⊢ 𝑣 : 𝜏 / 𝜄
Δ;Θ; Γ ⊢ 𝑒1 : 𝜏1 / 𝜀 Δ;Θ; Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2 / 𝜀

Δ;Θ; Γ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝜏2 / 𝜀

Δ;Θ; Γ ⊢v 𝑢 : 𝜏1→𝜀𝜏2 Δ;Θ; Γ ⊢v 𝑣 : 𝜏1

Δ;Θ; Γ ⊢ 𝑢 𝑣 : 𝜏2 / 𝜀
Δ;Θ; Γ ⊢v 𝑣 : ∀𝛼 :: 𝜅. 𝜏 Δ; dom(Θ) ⊢ 𝜏 ′ :: 𝜅

Δ;Θ; Γ ⊢ 𝑣 ∗ : 𝜏{𝜏 ′ /𝛼} / 𝜄

Δ;Θ; Γ ⊢v 𝑣 : ∀𝑎 : 𝜎. 𝜏 𝑏 : 𝜎 ∈ Θ

Δ;Θ; Γ ⊢ 𝑣 𝑏 : 𝜏{𝑏 /𝑎} / 𝜄
Δ;Θ; Γ ⊢v 𝑣 : 𝜏1 Δ; dom(Θ) ⊢ Θ(𝑎) { 𝜏1 ⇒ 𝜏2

Δ;Θ; Γ ⊢ do𝑎 𝑣 : 𝜏2 / 𝑎

Δ; dom(Θ) ⊢ 𝜎 :: S Δ; dom(Θ) ⊢ 𝜏 ′ :: T
Δ;Θ, 𝑎 : 𝜎 ; Γ ⊢ 𝑒 : 𝜏 ′ / 𝑎 · 𝜀 Δ;Θ; Γ ⊢ ℎ : 𝜎 ⊲ 𝜏 / 𝜀 Δ;Θ; Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒𝑟 : 𝜏 / 𝜀

Δ;Θ; Γ ⊢ handle𝑎 𝑒 {ℎ; return 𝑥 . 𝑒𝑟 } : 𝜏 / 𝜀

Δ;Θ; Γ ⊢ 𝑒 : 𝜏 / 𝜀 Δ;Θ ⊢ 𝜏 <: 𝜏 ′ Δ;Θ ⊢ 𝜀 <: 𝜀 ′

Δ;Θ; Γ ⊢ 𝑒 : 𝜏 ′ / 𝜀 ′

Typing handlers. Δ;Θ; Γ ⊢ ℎ : 𝜎 ⊲ 𝜏 / 𝜀

Δ;Θ; Γ, 𝑥 : 𝜏1, 𝑟 : 𝜏2→𝜀𝜏 ⊢ 𝑒 : 𝜏 / 𝜀
Δ;Θ; Γ ⊢ 𝑥, 𝑟 . 𝑒 : 𝜏1 ⇒ 𝜏2 ⊲ 𝜏 / 𝜀

Δ, 𝛼 :: 𝜅;Θ; Γ ⊢ ℎ : 𝜎 ⊲ 𝜏 / 𝜀
Δ;Θ; Γ ⊢ ℎ : ∀𝛼 :: 𝜅. 𝜎 ⊲ 𝜏 / 𝜀

(★)

Fig. 3. Typing relations

do reductions). As an example, consider the following term:
3

handle𝑎 𝝀 (). do𝑎 () {𝑥, 𝑟 . 𝑟 𝑥 ; 𝑟id}

It reduces in one step to 𝝀 (). do𝑎 (), which clearly contains an unbound variable 𝑎. Due to

hygienic convention, the instance variables that are freed by the reductions become inert: operations

annotated by these variables can never be handled, thus behaving somewhat like dangling pointers.

The grammar of the evaluation contexts (represented inside-out) and resumptions (represented

outside-in) is presented in Figure 4. Note that both the evaluation contexts and resumptions bind

3
While this term does not have a type in the system we consider, it presents the general pattern in which a reduction can

capture a variable under a binder. It can also be used to construct a well-typed expression with the same runtime property

by hiding the type unit→𝑎unit under an existential quantifier.
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ECont ∋ 𝐸 ::= □ | 𝐸 [let𝑥 = □ in 𝑒] | 𝐸 [handle𝑎 □ {ℎ; 𝑟 }] (evaluation contexts)

RCont ∋ 𝑅 ::= □ | let𝑥 = 𝑅 in 𝑒 | handle𝑎 𝑅 {ℎ; 𝑟 } (resumptions)

(fun 𝑓 𝑥 . 𝑒) 𝑣 ↦→ 𝑒{fun 𝑓 𝑥 . 𝑒 / 𝑓 }{𝑣 /𝑥} (𝚲𝛼 . 𝑒) ∗ ↦→ 𝑒 (𝝀 𝑎. 𝑒) 𝑏 ↦→ 𝑒{𝑏 /𝑎}

handle𝑎 𝑣 {ℎ; return 𝑥 . 𝑒} ↦→ 𝑒{𝑣 /𝑥}
𝑅 = handle𝑎 𝑅′

{𝑥 : 𝜏1, 𝑦 : 𝜏2. 𝑒 ; 𝑟 }

𝑅 [do𝑎 𝑣] ↦→ 𝑒{𝑣 /𝑥}{𝝀 𝑧. 𝑅 [𝑧] /𝑦}

let𝑥 = 𝑣 in 𝑒 ↦→ 𝑒{𝑣 /𝑥}
𝑒1 ↦→ 𝑒2

𝐸 [𝑒1] → 𝐸 [𝑒2]

Fig. 4. Open semantics

the instance variables that are handled by these contexts. We consider all evaluation contexts

to be complete program contexts; to keep track of the binding structure of the contexts in the

rest of the paper, it is useful to stratify them into sets ECont
𝑋
of evaluation contexts that bind

precisely the variables found in a set 𝑋 . We can extend this stratification to expressions, values

and handlers, writing Exp
𝑋
to mean the set of expressions that are potentially open in instance

variables, whereof the ones contained in 𝑋 should be handled by an evaluation context, while all

the rest are considered globally free. In particular, all free instance variables of Exp
∅
are globally

free — and this is the set of complete programs. Thus, we can set the type of plugging an expression

into the evaluation context, −[−] as ECont𝑋 → Exp
𝑋 → Exp

∅
, binding all variables in 𝑋 and

leaving those outside 𝑋 as globally free.

By convention, we equate expressions of Exp
𝑋
up to renaming of bound variables, as well as free

variables outside of 𝑋 : this is benign, as these are inert, and, if used, lead to an error independent of

the choice of names. While this plays little active role in the operational semantics, we believe that

— in this case, where binders are so dynamic — it is rather important to keep this notion precise.

We treat values and handlers analogous to expressions — but what of the resumptions? It turns

out that it is useful to annotate them with two sets: the set 𝑌 of the variables that we expect to be

bound by an evaluation context, and the set 𝑋 that is bound by the handlers within 𝑅. Thus we

take sets RCont
𝑋
𝑌
, and the type of the natural plugging operation as RCont

𝑋
𝑌
→ Exp

𝑋⊎𝑌 → Exp
𝑌
.

Now we can see how the variables become globally free: since, by the last rule, a reduction is a

contraction within an evaluation context, we need to consider a contraction on expressions with the

“interesting” free instance variables given by some set 𝑋 that matches the variables bound by the

evaluation context 𝐸. Most contractions do not interact with this set, and are rather standard; the

rule for reduction of the application of instance lambda to an instance also does not introduce any

new free instance variables. Unsurprisingly, the only two rules that can make a variable globally

free are the contractions of a handler. If we see a value within the handler, we use the expression

provided by the return clause, as explained in Section 2. However, note that the variable 𝑎 may

appear within 𝑣 (say, in a body of a returned function) and, by hygienic convention, is not a member

of 𝑋 . Thus, it may become globally free, and thus inert, after the reduction. A similar effect, but

on a somewhat larger scale, may occur in the contraction rule for the operation: assume that

𝑅 ∈ RCont
𝑌
𝑋
, i.e., that it binds some set of variables 𝑌 (which includes 𝑎 in particular), which, by

hygiene, is disjoint from 𝑋 . Clearly, we have 𝑣 ∈ Exp
𝑋⊎𝑌

, but at the same time 𝑒 ∈ Exp
𝑋
, since it is
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located on the outside of the resumption. Thus, the reduction needs to set the variables of 𝑌 as

globally free — and implicitly rename their bound occurrences in the reified resumption, 𝝀 𝑧. 𝑅 [𝑧]
— if our assumptions of hygiene are to be maintained.

While this semantics meshes well with the intuitive understanding of effect instances as lexically

scoped, there are two significant limitations. Firstly, the fact that the argument of the operation

escapes from the scope of the handlers in the resumption makes it unsound in the presence of the

universal quantifiers in the signature. Consider the identity handler, ℎid
△
= 𝑥, 𝑟 . 𝑟 𝑥 , which simply

passes its arguments to the resumption. Clearly, we have

Δ;Θ; Γ ⊢ ℎid : (∀𝛼 :: T. 𝛼 ⇒ 𝛼) ⊲ 𝜏 / 𝜀,
for any contexts, result types, and effects. Now, consider the following expression:

handle𝑎 handle𝑏 (do𝑎 (𝝀 (). do𝑏 ())) () {ℎid; 𝑟id} {ℎid; 𝑟id},
where 𝑟id is the identity return clause. The signatures associated with the two instances are both

polymorphic, but while the type of the operation’s argument associated with 𝑏 is instantiated with

unit, the one associated with 𝑎 is instantiated by the operation with the effectful type unit→𝑏unit.
Still, the entire expression typechecks with return type unit and no remaining effects. However,

consider how the open semantics reduces this term: when the outer do operation is encountered,

the matching handler is found in the evaluation context, and the argument of the operation (the

suspended call to do𝑏 ) is passed, along with the resumption, as an argument to the body of the

handler. Thus, we obtain the following reduct:

(𝝀 𝑧. handle𝑎 handle𝑏 𝑧 () {ℎid; 𝑟id} {ℎid; 𝑟id}) (𝝀 (). do𝑏 ()).
Note how 𝑏 has escaped its lexical scope: with the following beta reduction, it will re-enter the

scope of the handler, but the hygienic convention will force us to rename the binding occurrence to

some other variable, say, 𝑏 ′ — and after another step, the reduction will get stuck. Note that the use

of resumptions is crucial here: mere exceptions, which may not use the resumption, would never

lead to such a problem, even if we allow polymorphic quantification.

Since polymorphic signatures are an important aspect of programming with effect handlers (for

example, the operations throw and pick from Section 2 both have natural polymorphic types), this

semantics is clearly restrictive. Moreover, and this is the second limitation, the necessary refreshing

of variables bound by resumptions makes it at best unclear whether this semantics can be efficiently

implemented. Nonetheless, we believe that this semantics is still very useful as a specification, or a

model that one can take advantage of when not using polymorphic signatures; hence our attempt

to establish a correspondence with the generative semantics, to which we now turn.

5 TURNING BINDERS INTO LABELS: THE GENERATIVE SEMANTICS
We now investigate an alternative semantics for our calculus, one that does not suffer from the

problems encountered in the preceding section. To this end, we generate runtime instances that
replace the binders rather than reducing under them. The idea is somewhat similar to the generative

exceptions of the ML language family or certain region calculi: when a handler is encountered in

an evaluation position, we pick a globally fresh runtime instance and substitute it for the instance

variable. These runtime instances are global labels without any binder structure, which ensures

that the evaluation of complete programs always reduces closed expressions, more in line with

classic programming language semantics. The definition is presented in Figure 5.

As we can see from the definition, we assume a set of runtime instance labels, Inst, and three new

forms of runtime expressions, as is usual in calculi that generate objects at runtime. In this case,

instance application and operation are merely variants of the forms found in the source calculi,
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Inst ∋ 𝑙 . . . (instance labels)

Exp ∋ 𝑒 ::= . . . | handle𝑙 𝑒 {ℎ; 𝑟 } | 𝑣 𝑙 | do𝑙 𝑣
ECont ∋ 𝐸 ::= □ | 𝐸 [let𝑥 = □ in 𝑒] | 𝐸 [handle𝑙 □ {ℎ; 𝑟 }]
RCont ∋ 𝑅 ::= □ | let𝑥 = 𝑅 in 𝑒 | handle𝑙 𝑅 {ℎ; 𝑟 }

(fun 𝑓 𝑥 . 𝑒) 𝑣 ↦→ 𝑒{fun 𝑓 𝑥 . 𝑒 / 𝑓 }{𝑣 /𝑥} (𝚲𝛼 . 𝑒) ∗ ↦→ 𝑒 (𝝀 𝑎. 𝑒) 𝑙 ↦→ 𝑒{𝑙 /𝑎}

handle𝑙 𝑣 {ℎ; return 𝑥 . 𝑒} ↦→ 𝑒{𝑣 /𝑥}
𝑅 = handle𝑙 𝑅′

{𝑥, 𝑘 . 𝑒 ; 𝑟 } free(𝑙, 𝑅′)
𝑅 [do𝑙 𝑣] ↦→ 𝑒{𝑣 /𝑥}{𝝀 𝑧. 𝑅 [𝑧] /𝑘}

let𝑥 = 𝑣 in 𝑒 ↦→ 𝑒{𝑣 /𝑥}

𝑒1 ↦→ 𝑒2

𝐸 [𝑒1] → 𝐸 [𝑒2]
fresh(𝑙)

𝐸 [handle𝑎 𝑒 {ℎ; 𝑟 }] → 𝐸 [handle𝑙 𝑒{𝑙 /𝑎} {ℎ; 𝑟 }]

Fig. 5. Generative semantics

but using instance labels rather than instance variables. The final one, a new form of handler, is

different in that it no longer binds an instance, but rather is tagged with a label — similar to calculi

with static handler identities. The reduction rules for this runtime handler match closely with those

found in earlier calculi: an operation finds the nearest enclosing handler with its label (through the

simple free predicate) and continues the evaluation in the handler’s body. The reduction rule for

the instance application is also rather unsurprising: the runtime instance 𝑙 is simply substituted for

the instance variable 𝑎 in the body of the function. What brings new power to the semantics is the

fact that these instances are generated at runtime, in the final rule of the semantics.

In this rule, we generate an instance 𝑙 , fresh with respect to the entire program, and substitute

it throughout the expression for the bound occurrences of 𝑎; we also replace the lexically scoped

handler of our source calculus with the more standard runtime handler. Note also that only the

runtime handler and let expression generate evaluation contexts (or resumptions), and thus we can

never reduce under binders.

In order to observe the behaviour of this calculus in more detail, let us consider the example from

the previous section, of the program that is well-typed in the calculus that allows polymorphic

signatures, but is ill-behaved in the open semantics. Recall we have

handle𝑎 handle𝑏 (do𝑎 (𝝀 (). do𝑏 ())) () {ℎid; 𝑟id} {ℎid; 𝑟id},

where ℎid and 𝑟id are identity handlers and resumptions, respectively. The only reduction we can

perform is turning the outer handler into a runtime handler, getting

handle𝑙1 handle𝑏 (do𝑙1 (𝝀 (). do𝑏 ())) () {ℎid; 𝑟id} {ℎid; 𝑟id},

where 𝑙1 is a runtime instance. The runtime handler now constitutes an evaluation context, allowing

us to generate a fresh instance for the inner handler — after which the do–handle reduction may

fire. Its result is

(𝝀 𝑧. handle𝑙1 handle𝑙2 𝑧 () {ℎid; 𝑟id} {ℎid; 𝑟id}) (𝝀 (). do𝑙2 ()),

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 48. Publication date: January 2020.



48:14 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski

which is similar to the expression obtained in the open semantics — but, crucially, without the

problematic status of the instance found at the suspended do operation. Thus, after a series of beta

reductions, we can safely reduce the second operation and proceed to return the unit value.

Not only does this semantics workwell with signature polymorphism (cf. Section 6), it is also quite

amenable to implementation, since it is not difficult to generate globally fresh identifiers whenever

necessary. We do, however, lose much of the simplicity of the open semantics by this move, and it is

not clear at face value whether this semantics is even correct. The reason for this uncertainty is that

the problem discussed in Section 2 could potentially return. By equipping handlers in our calculus

with binding structure, we have ensured that no two handlers in an enclosing context could be

mistaken: they would be referred to by distinct variables. When using the generative semantics,

this useful invariant is lost: as discussed before, we can duplicate resumptions, and thus handlers

decorated with the same label — and we have no coercions or adaptors to distinguish them! Since

we can only duplicate the same handler in this way, it is intuitively clear that this would not lead to

well-typed programs that get outright stuck; however, this makes the mental model of the calculus

much more complex. Moreover, it is not necessarily clear that this always leads to the intended

semantics: in essence, that the calculus equipped with this semantics enjoys parametricity.

In fact, the sensible behaviour of the semantics hinges on the properties of the type system.What’s

more, in the case of programs without signature polymorphism, the types enforce the equivalence

of the two semantics: a highly nontrivial property, given that we know, from the example in the

preceding paragraphs, that when not restricted, the two semantics can be distinguished. We believe

this equivalence to be a highly desirable property, as it allows us, in many cases, to think about

the open semantics, while running our programs using the more robust and easier to implement

efficiently generative one. Before turning to the semantic machinery that we use to build sound

logical relations that ensure parametricity of the generative semantics and the equivalence of the

two in the absence of signature polymorphism, let us note in passing that since this equivalence

hinges on the properties of a rich type system, we find it unlikely that simpler methods, such as

direct simulation arguments, would be sufficient to establish this property.

6 LOGICAL RELATIONS
We now turn to the properties of our calculus with its two semantics. There are two properties

that we seek to establish: firstly, equivalence of the semantics in the absence of polymorphic effect

signatures, and secondly, parametricity of the calculus equipped with the generative semantics,

particularly in presence of polymorphic effect signatures. The latter property gives us confidence

that the generative semantics is well-behaved, and thus can be considered as a sensible foundation

of an implementation, while the former (beyond being an interesting theoretical observation)

serves to convince us that – at least in the restricted setting – the duplication of labels in the

evaluation context, which is possible in the generative semantics, does not lead to matching

different handlers than those we expect (as per the open semantics). We establish both these

properties by constructing appropriate step-indexed logical relations [Appel and McAllester 2001],

building directly on [Biernacki et al. 2018].

We begin with the model of the calculus with signature polymorphism under the generative

semantics, as it is a rather straightforward extension of Biernacki et al.’s model, and then we turn

to the more complex Kripke-style model that allows us to relate the two semantics. As with the

model we build on, we work implicitly in the category COFE of complete ordered families of

equivalences [Gianantonio and Miculan 2002] and use the later operator, written ▷, to enforce a

reduction of the step index [Appel et al. 2007; Dreyer et al. 2011]. We define recursive predicates

using the unique fixed-point operator that ensures well-foundedness through the later operator,

although we elide the details for clarity of presentation.
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6.1 Parametricity of the Generative Semantics
While this model is closely related to the model of Biernacki et al., we still have a many-kinded

system, and thus we must begin by defining the spaces that will be used as interpretations of the

kinds. Thus, we define semantic types, written Type, effects, Effect, signatures, Sig, and compu-

tations Comp. We also set the former three as the interpretations of the appropriate kinds, and

define the space of semantic instances, ℑ, which we use to connect the instance variables with their

interpretations and runtime counterparts:

Comp △
= UPred(Exp2)

JTK △
= Type △

= UPred(Val2)

JEK △
= Effect △

=
{
𝑅 ∈ UPred(Exp2 × Pfin (Inst)2 × Comp)

�� |𝑅 |
Inst

is finite

}
JSK △

= Sig △
= UPred(Val2 × Type)

ℑ △
= Sig × Inst

2

UPred(𝑋 ) denotes the space of (step-indexed) predicates over a (non-indexed) set X. Since we

work over operational semantics, the notions of semantic types and computations is standard: they

are (step-indexed) relations over, respectively, closed values and closed expressions. The semantic

signatures and effects follow the ideas of Biernacki et al., although somewhat factorised: the

semantic signature relates a pair of values related as an argument of the do operation, together with

a semantic type that describes the expected answers. The semantic effect relates two expressions

that model control-stuck parts of a program, with a semantic computation that denotes the related

answers — and two sets of instances that denote at which instance a programmay be stuck. The side

condition requires that any semantic effect uses only a finite set of instances; a technical measure

that allows us to generate a fresh instance whenever necessary. This notion of semantic effects is

close to Biernacki et al.; however, while they use finite maps to distinguish multiple uses of the

same effect, we may simply refer to particular instances by name, thus simplifying the setup. On

the other hand, we now require a device that links instance variables (which are a subset of open

types) with runtime instances, which may appear in the expressions. To this end, we use semantic

instances, which simply consist of a signature and a pair of runtime instances. This technique is

quite standard for many generative aspects of programming languages, we discuss some of the

related work in Section 8.

Interpretation of types, signatures, and effects. We now define an interpretation for any type

(of a given kind 𝜅) that is well-defined in some context Δ, and uses a set 𝑋 of free instance

variables. In order to interpret such a type, we need an interpretation for a type-variable context

Δ, as well as an interpretation for instance variables contained in 𝑋 : then, the denotation of

the type ought to belong to J𝜅K. For Δ, we can pick a simple pointwise interpretation, setting

𝛿 ∈ JΔK ⇐⇒ ∀𝛼. 𝛿 (𝛼) ∈ JΔ(𝛼)K. For free instance variables we may pick any semantic instance,

i.e., any map of type 𝑋 → ℑ is a sensible interpretation of the set 𝑋 of free instance variables. This

leads us to the following type of the interpretation map for open types:

J−K : JΔK → (𝑋 → ℑ) → J𝜅K.

The definition is presented in Figure 6, and we consider constructs of each kind in turn. Observe

that the interpretations of the unit and arrow types, as well as the universal quantifier over types

and the type variables match the standard definitions for polymorphic lambda calculus. Note also,

that – in line with our design – the effect structure is set-like: we interpret the pure effect as an

empty semantic effect, and the effect composition as a sum.
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J𝛼K𝛿,𝜗 △
= 𝛿 (𝛼)

JunitK𝛿,𝜗 △
= {((), ())}

J𝜏1→𝜀𝜏2K𝛿,𝜗
△
=

{
(𝑣1, 𝑣2)

��� ∀(𝑢1, 𝑢2) ∈ J𝜏1K𝛿,𝜗 . (𝑣1 𝑢1, 𝑣2 𝑢2) ∈ EJ𝜏2 / 𝜀K𝛿,𝜗
}

J∀𝛼 :: 𝜅. 𝜏K𝛿,𝜗 △
=

{
(𝑣1, 𝑣2)

��� ∀𝜇 ∈ J𝜅K. (𝑣1 ∗, 𝑣2 ∗) ∈ EJ𝜏 / 𝜄K𝛿 [𝛼 ↦→𝜇 ],𝜗
}

J∀𝑎 : 𝜎. 𝜏K𝛿,𝜗 △
=

{
(𝑣1, 𝑣2)

��� ∀𝑙1, 𝑙2, 𝐼 . 𝐼 = (J𝜎K𝛿,𝜗 , 𝑙1, 𝑙2) ⇒ (𝑣1 𝑙1, 𝑣2 𝑙2) ∈ EJ𝜏 / 𝜄K𝛿,𝜗 [𝑎 ↦→𝐼 ]
}

J𝜄K𝛿,𝜗 △
= ∅

J𝜀1 · 𝜀2K𝛿,𝜗
△
= J𝜀1K𝛿,𝜗 ∪ J𝜀2K𝛿,𝜗

J𝑎K𝛿,𝜗 △
=
{
(do𝑙1 𝑣1,do𝑙2 𝑣2, {𝑙1} , {𝑙2} , 𝜇)

�� ∃𝜈. 𝜗 (𝑎) = (𝜈, 𝑙1, 𝑙2) ∧ (𝑣1, 𝑣2, 𝜇) ∈ 𝜈
}

J𝜏1 ⇒ 𝜏2K𝛿,𝜗
△
=

{
(𝑣1, 𝑣2, J𝜏2K𝛿,𝜗 )

��� (𝑣1, 𝑣2) ∈ J𝜏1K𝛿,𝜗
}

J∀𝛼 :: 𝜅. 𝜎K𝛿,𝜗 △
=

{
(𝑣1, 𝑣2, 𝜇)

��� ∃𝜇 ′ ∈ J𝜅K. (𝑣1, 𝑣2, 𝜇) ∈ J𝜎K𝛿 [𝛼 ↦→𝜇′ ],𝜗
}

Fig. 6. Interpretation of types, effects and signatures. Throughout, 𝛿 gives interpretation of free type variables,
and 𝜗 — the interpretation of free instance variables.

This leaves us with the features that have to do with instances and signatures. Let us first consider

the singleton effect that consists of an instance variable 𝑎: clearly, 𝜗 gives us a semantic instance

for 𝑎, which consists of a semantic signature 𝜈 and two runtime instances, 𝑙1 and 𝑙2. Thus, the

appropriate control-stuck terms are of the form do𝑙𝑖 𝑣𝑖 for some values 𝑣𝑖 — but since we have a

semantic signature for 𝑎, these values, together with the relation on the answers, should belong to

that signature — 𝜈 . Let us now consider the universal quantifier over instances: we do know the

signature 𝜎 , and its interpretation should clearly be associated with 𝑎 in the interpretation of 𝜏 . But

what runtime instances should we use? The answer, appropriate for the universal quantifier, is any

two, as long as we are consistent: thus, we extend 𝜗 with the interpretation of 𝜎 and any pair of

instances 𝑙1 and 𝑙2, but also require that the values are related by this environment when applied to

these particular instances.

Finally, consider the interpretation of signatures. The arrow signature requires that the arguments

are related at the left-hand-side type, and specifies the interpretation of the right-hand-side type as

the desired relation for the result. This, unsurprisingly, corresponds closely to the interpretation

of a single effect by Biernacki et al. The surprising rule is the one for polymorphic signatures,

which interprets a universal quantifier via an existential one. One intuitive reading is that it is the

signatures’ “elimination forms” (i.e., the handlers) that need to be parametric — and thus that the

nature of a parametric signature is closer to an existential quantifier than to a universal one.

Closure operators and the logical relation. We use biorthogonality [Pitts and Stark 1998] to define

the closure operator for computations, with the additional closure for control-stuck expressions

introduced in [Biernacki et al. 2018]; the definitions are presented in Figure 7. Following the latter

work, we test evaluation contexts both with values and with control-stuck expressions – that is,

intuitively, operations wrapped in resumptions that do not handle them. Thus, the evaluation
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(𝑒1, 𝑒2) ∈ EJ𝜏 / 𝜀K𝛿,𝜗 ⇐⇒ ∀(𝐸1, 𝐸2) ∈ KJ𝜏 / 𝜀K𝛿,𝜗 . (𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ Obs

(𝐸1, 𝐸2) ∈ KJ𝜏 / 𝜀K𝛿,𝜗 ⇐⇒ ∀(𝑣1, 𝑣2) ∈ J𝜏K𝛿,𝜗 . (𝐸1 [𝑣1], 𝐸2 [𝑣2]) ∈ Obs ∧
∀(𝑒1, 𝑒2) ∈ SJ𝜏 / 𝜀K𝛿,𝜗 . (𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ Obs

(𝑅1 [𝑒1], 𝑅2 [𝑒2]) ∈ SJ𝜏 / 𝜀K𝛿,𝜗 ⇐⇒ ∃𝐿1, 𝐿2, 𝜇. (𝑒1, 𝑒2, 𝐿1, 𝐿2, 𝜇) ∈ J𝜀K𝛿,𝜗

∧ (∀𝑙 ∈ 𝐿𝑖 . free(𝑙, 𝑅𝑖 ))𝑖∈{1,2}
∧ ∀(𝑒 ′

1
, 𝑒 ′

2
) ∈ 𝜇. (𝑅1 [𝑒 ′1], 𝑅2 [𝑒 ′2]) ∈ ▷EJ𝜏 / 𝜀K𝛿,𝜗

(𝑥, 𝑘 . 𝑒1, 𝑥, 𝑘 . 𝑒2) ∈ HJ𝜎 ⊲ 𝜏 / 𝜀K𝛿,𝜗 ⇐⇒ ∀𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝜇. (𝑢1, 𝑢2, 𝜇) ∈ J𝜎K𝛿,𝜗 ⇒(
∀(𝑤1,𝑤2) ∈ 𝜇. (𝑣1 𝑤1, 𝑣2 𝑤2) ∈ EJ𝜏 / 𝜀K𝛿,𝜗

)
⇒

(𝑒1{𝑢1 /𝑥}{𝑣1 /𝑦}, 𝑒2{𝑢2 /𝑥}{𝑣2 /𝑦}) ∈ EJ𝜏 / 𝜀K𝛿,𝜗

(𝑒1, 𝑒2) ∈ Obs ⇐⇒ (𝑒1 = () ∧ 𝑒2 →∗
()) ∨

(
∃(𝑒 ′

1
, 𝑒 ′

2
) ∈ ▷Obs. 𝑒1 → 𝑒 ′

1
∧ 𝑒2 →∗ 𝑒 ′

2

)
Fig. 7. Closure operators for expressions, evaluation contexts, control-stuck expressions, and handlers

contexts should provide the interpretations to the “stuck” operations, which makes it a crucial

part of the relation for contexts. To formalise the notion of control-stuck expressions, we use the

interpretation of the effect, which describes the possible stuck forms. Note that even though the

definitions seem circular, the use of the later operator in the interpretation of control-stuck terms

ensures that the recursion is guarded, and thus well-defined. Also, note that in the relation for

handlers we pick any semantic type 𝜇 for the arguments of the resumption, thus allowing for

handlers where 𝜎 is a universally quantified signature. Thus, the assertion that 𝑣1 and 𝑣2 are related

reified resumptions restates the definition for the arrow type — but with the argument type 𝜇,

rather than an interpretation of a particular syntactic type.

The only component we lack for the definition of the logical approximation relation is the

interpretation of term- and instance-variable contexts. The former is standard, provided we have

interpretations for type and instance variables; the latter behaves in a pattern similar to that

observed in the interpretation of the instance quantifier: we take the interpretations of appropriate

signatures, together with any runtime instances — but we ensure that the chosen instances will be

substituted for appropriate instance variables.

(𝜗, 𝜂1, 𝜂2) ∈ JΘK𝛿 ⇐⇒ ∀𝑎 ∈ dom(Θ). 𝜗 (𝑎) = (JΘ(𝑎)K𝛿,𝜗 , 𝜂1 (𝑎), 𝜂2 (𝑎))
(𝛾1, 𝛾2) ∈ JΓK𝛿,𝜗 ⇐⇒ ∀𝑥 ∈ dom(Γ). (𝛾1 (𝑥), 𝛾2 (𝑥)) ∈ JΓ(𝑥)K𝛿,𝜗

Finally, we can define the logical approximation relation:
4

Δ;Θ; Γ ⊨ 𝑒1 ≼ 𝑒2 : 𝜏 / 𝜀 ⇐⇒
∀𝛿 ∈ JΔK, (𝜗, 𝜂1, 𝜂2) ∈ JΘK𝛿 , (𝛾1, 𝛾2) ∈ JΓK𝛿,𝜗 . (𝜂1 (𝛾1 (𝑒1)), 𝜂2 (𝛾2 (𝑒2))) ∈ EJ𝜏 / 𝜀K𝛿,𝜗

Now we can proceed in the usual way, showing that logical approximation is a compatible

congruence, which gives us the fundamental property of the logical relations, and hence soundness

(given the natural definition of contextual approximation).

4
In the following we concentrate on expressions, eliding analogous definitions and statements for values and handlers.
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Theorem 1 (Fundamental). Any well-typed expression 𝑒 logically approximates itself, i.e., if
Δ;Θ; Γ ⊢ 𝑒 : 𝜏 / 𝜀, then we have Δ;Θ; Γ ⊨ 𝑒 ≼ 𝑒 : 𝜏 / 𝜀.

Theorem 2 (Type Soundness). For any well-typed program 𝑒 its evaluation does not get stuck, i.e.,
if ·; ·; · ⊢ 𝑒 : 𝜏 / 𝜄 and 𝑒 →∗ 𝑒 ′ ↛, then 𝑒 ′ ∈ Val.

Theorem 3 (Soundness). Logical approximation entails contextual approximation, i.e., if Δ;Θ; Γ ⊨
𝑒1 ≼ 𝑒2 : 𝜏 / 𝜀, then Δ;Θ; Γ ⊢ 𝑒1 ⪯ 𝑒2 : 𝜏 / 𝜀.

Note that in the definition we did not rely on the tight connection between the handlers and

generation of instances. In fact, the only aspect of the proof where the generativity and the attendant

freshness of the instance is important is the compatibility of the inference rule for the handle
construct. There, it is used to enforce the fact that the runtime instance picked for the instance

variable bound by the handler is distinct from any others that could appear in the remainder of the

effect, 𝜀. This ensures that we handle precisely these operations that the type system expects to be

handled. However, this notion need not be baked into the handling construct itself. In particular,

this approach should readily generalise to the case of shallow handlers, such as those found in

Frank [Convent et al. 2019], where instances could be provided by recursive function definitions

rather than the handlers themselves. At the same time, we cannot decouple the two in general, as

the separation required by the handler would not be preserved by all the constructs in our language

– particularly by polymorphic abstraction. While the precise conditions required for decoupling

instance generation and handlers warrant further investigation, we do not pursue this line further

in the current work.

6.2 Equivalence of the Two Semantics
We now turn to the more novel logical relation that we use to prove that our two semantics

are equivalent (in the absence of polymorphic signatures). To this end, we need to consider an

interesting problem: in the previous section, our relations operated on closed values, expressions,

and handlers — we have substituted away all term variables with closed values, and all instance

variables with runtime instances, retaining a link between the latter two, since free instance

variables did appear in types that we needed to interpret. However, the open semantics never

substitutes anything for instance variables, and computes using them under (some) binders. Thus,

one of the usual invariants of our methodology no longer holds: we cannot simply define a relation

for closed terms and lift it to open terms via substitution. How can we proceed?

The idea behind our solution is to use a Kripke structure to track the free variable sets of the

open semantics — and of their evolution under weakening, substitution or opening. These sets

of variables are then used to ensure that the closing evaluation contexts give interpretation, via

handlers, to precisely these variables, preserving the essence of the biorthogonal approach. There

is, however, a discrepancy: while the runtime sets of available free instance variables may fluctuate

with substitution and evaluation, the one in the world of types is static and never varies with time.

Thus, our worlds are indexed with the starting set of instance variables: more precisely, we set

World𝑋 △
= Σ𝑌 ⊆

fin
IVar𝑋 ⇀ 𝑌

for any finite 𝑋 ⊆ IVar. We write our worlds (𝑌, 𝜌) when precision is needed, but often omit the

set if its clear from context (as the codomain of 𝜌). Note that our maps are partial: this is so, since

the evolution of a program may set some instance variables globally free (cf. Section 4): these are

no longer “interesting”, and surely may not be interpreted by the evaluation context.

For any pair of maps that have the same domains, we define a notion of mediation via 𝜌 , a map

between their codomains, by composition: 𝜌1 ⊑𝜌 𝜌2 ⇐⇒ 𝜌 ◦ 𝜌1 = 𝜌2. This, of course, induces a
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preorder onWorld𝑋 : 𝜌1 ⊑ 𝜌2 ⇐⇒ ∃𝜌. 𝜌1 ⊑𝜌 𝜌2. Thus, we can treatWorld𝑋 as a Kripke structure

— as long as we can define spaces that are appropriately closed under world evolution.

We do this in two steps: first, consider a family 𝐹 of sets indexed by finite sets of instance

variables that is functorial with respect to partial maps between sets of instance variables.
5
Now,

for any step-indexed predicate 𝑃 : UPred(𝐹 (𝑌 )) we can retract it via a map 𝜌 : 𝑋 ⇀ 𝑌 obtaining a

predicate over 𝐹 (𝑋 ), as follows:

𝑒 ∈ 𝑃 ↓ 𝜌 ⇐⇒ 𝐹 (𝜌) (𝑒) ∈ 𝑃 .

This retraction is precisely what we need to define world-indexed predicates, which are closed under

evolution of the world. Formally, we take WIPred𝑋 (𝐹 ) for some finite set of instance variables

𝑋 and a functorial family of sets 𝐹 to be a World𝑋 -indexed family 𝑅 of step-indexed predicates

over 𝐹 at the given world that are closed under future-world transitions:

WIPred𝑋 (𝐹 ) △
=

{
𝑅 ∈ Π (𝑌,𝜌) ∈World𝑋UPred(𝐹 (𝑌 ))

��� ∀𝜌1 ⊑𝜌′ 𝜌2. 𝑅(𝜌1) ⊆ 𝑅(𝜌2) ↓ 𝜌 ′
}
.

Note how the use of retraction ensures that the relation is closed without specifying much about 𝐹 .

These world-indexed predicates are at the core of our definition: one useful operator that we can

define for them is shifting the starting world of a predicate 𝜇 : WIPred𝑋 (𝐹 ) along a map 𝜌 : 𝑋 ⇀ 𝑌 ,

as follows:

(𝜇 ⇑ 𝜌) (𝜌 ′) △
= 𝜇 (𝜌 ′ ◦ 𝜌),

where 𝜌 ′
: 𝑌 ⇀ 𝑍 , since composition preserves closure under world evolution.

Semantic domains and interpretation of kinds. With much of the machinery defined, we can

retrace the steps taken in the previous sections, and build appropriate universes of semantic types,

computations, signatures and effects, and use those as interpretations of kinds in our calculus. In

contrast to that definition, however, our universes are again indexed by the sets of free instance

variables. We set:

Comp𝑋 △
= WIPred𝑋 (𝑌 ↦→ Exp × Exp𝑌 )

JTK𝑋 △
= Type𝑋 △

= WIPred𝑋 (𝑌 ↦→ Val × Val𝑌 )

JEK𝑋 △
= Effect𝑋 △

=
{
𝑅 ∈ WIPred𝑋 (𝑌 ↦→ Exp × Exp𝑌 × Pfin (Inst) × Comp𝑌 )

�� |𝑅 |
Inst

is finite

}
JSK𝑋 △

= Sig𝑋 △
= WIPred𝑋 (𝑌 ↦→ Val × Val𝑌 × Type𝑌 )

ℑ𝑋 △
= Sig𝑋 × Inst,

again defining semantic instances as a package that contains a semantic signature — although this

time, only a single runtime instance is required, since only one of the semantics uses them. Note

that our relations work across semantics: we have closed terms of the instance semantics on the

left, and terms of the open semantics that are closed in term variables but that can contain free

instance variables on the right-hand side. Finally, note that we use semantic computations and

types, respectively, as parts of the family in the definition of semantic effects and signatures. This

is well-defined, as world-indexed predicates behave functorially with respect to our maps, with the

action on maps given by the ⇑ operator.

5
This is a technical requirement; all the families we consider, in particular terms of the program syntax, are clearly

well-behaved, so we only mention it explicitly where non-obvious.
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Interpretation of types, signatures and effects. As before, we can now define an interpretation for

types of kind 𝜅 that are well-formed in a type-variable context Δ and use free instance variables

from a set 𝑋 . Since our logical relation uses Kripke worlds, we need it to be parameterised by such

a world — particularly, one indexed by 𝑋 . All the other elements of our interpretation need to be

taken at this world, which, intuitively, describes the evolution of variables from 𝑋 to its codomain.

Thus, we need the interpretation of Δ to be parameterised by a set of type variables, giving us

𝛿 ∈ JΔK𝑊 ⇐⇒ ∀𝛼. 𝛿 (𝛼) ∈ JΔ(𝛼)K𝑊 . This leads to the following type of the interpretation map:

J−K : Π (𝑊,𝜌) ∈World𝑋 JΔK𝑊 → (𝑋 → ℑ𝑊 ) → J𝜅K𝑊 (id).

There are some things to note about this type: first, we can clearly see the distinction between

the variables that may appear in the type (given by 𝑋 ), and those that may appear in the terms in

our interpretation (given by𝑊 ). This is particularly visible in the map that gives interpretation

to variables in 𝑋 as semantic instances over𝑊 . Second, the result of our interpretation is not the

appropriate semantic space, but rather its underlying predicate. This is largely a matter of taste, but

we believe that it results in a cleaner presentation, with less pollution caused by having to consider

multiple worlds.

The definition itself, presented in Figure 8, is very reminiscent of the one we considered in

previous section, albeit with additional elements. Readers familiar with Kripke-style logical relations

will not be surprised that the interpretation of the arrow type needs to be explicitly closed under

future worlds — this is due to a contravariant occurrence of the world in the interpretation of the

argument type. Note, however, that since 𝛿 and 𝜗 are themselves world-indexed, we need to shift

them to the new world: thus we interpret both the argument and result types in the world 𝜌 ′ ◦𝜌 and

use 𝛿 ⇑ 𝜌 ′
and 𝜗 ⇑ 𝜌 ′

as the appropriate substitutions. Moreover, this evolution of the world needs

to be replicated at the term level, leading to the application of 𝜌 ′
to 𝑣2. This is a pattern repeated

throughout the definition. The general shape of the interpretation of the universal quantifier is

standard. However, in contrast to most Kripke-style logical relations, we require an explicit closure

under future worlds. This is caused by the fact that even the interpretation of kinds is indexed by a

set of instance variables, and we need to allow for the evolution of the world, even here. Leaving

the instance quantification aside for the moment, we note that the interpretation of effects is mostly

carried over from the relation for the generative semantics: they still behave very much set-like.

The only important difference is the treatment of instance variables: for the open expressions we

now use the world 𝜌 to give the appropriate substitution for 𝑎 — on the generative side, we pick

the runtime instance provided by 𝜗 , as before. Finally, for the effect signatures we again match the

interpretation we have seen before, the difference being that we now need to construct a semantic

type (and thus, a world-indexed family of predicates) from the interpretation of 𝜏2 — which is the

result of our choice of the type of the interpretation map, and poses no technical problems.

Let us now return to the instance quantifier. As before, we need to quantify over the future world

to allow for evolution. However, this time the situation is complicated by the fact that 𝜏 has an

additional free instance variable: 𝑎, which can evolve to end up within the set𝑊 ′
— or a globally

free variable. Thus, we pick an element𝑤 ∈𝑊 ′⊥
, where the choice of bottom corresponds to the

empty partial map from𝑊 ′ ⊎ {𝑎} to𝑊 ′
, and thus to setting 𝑎 as globally free. From this point on,

the definition matches the one for the generative semantics: we take a label 𝑙 and the semantic

instance composed of 𝑙 and the interpretation of 𝜎 in the world 𝜌 ′ ◦ 𝜌 (since 𝑎 is not free in 𝜎),

again, building an appropriate world-indexed predicate. Now it suffices to apply 𝑣1 to 𝑙 , move 𝑣2
forward by 𝜌 ′

, and apply it to 𝑎 moved forward to the set𝑊 ′
by the chosen element𝑤 . Note that if

𝑤 = ⊥, then we keep 𝑎 as the chosen variable — but its status changes to globally free, and thus

never handled by the evaluation context. This pair of terms has to belong to the interpretation of 𝜏

at a world that moves 𝑋 ⊎ {𝑎} to𝑊 ′
, given by (𝜌 ′ ◦ 𝜌) [𝑎 ↦→ 𝑤] and appropriately shifted 𝛿 and 𝜗 .
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J𝛼K𝛿,𝜗𝜌
△
= 𝛿 (𝛼) (id)

JunitK𝛿,𝜗𝜌
△
= {((), ())}

J𝜏1→𝜀𝜏2K𝛿,𝜗𝜌
△
=

{
(𝑣1, 𝑣2)

��� ∀𝜌 ′. ∀(𝑢1, 𝑢2) ∈ J𝜏1K
𝛿⇑𝜌′,𝜗⇑𝜌′
𝜌′◦𝜌 . (𝑣1 𝑢1, 𝜌 ′(𝑣2) 𝑢2) ∈ EJ𝜏2 / 𝜀K𝛿⇑𝜌

′,𝜗⇑𝜌′
𝜌′◦𝜌

}
J∀𝛼 :: 𝜅. 𝜏K𝛿,𝜗𝜌

△
=

{
(𝑣1, 𝑣2)

��� ∀𝜌 ′. ∀𝜇 ∈ J𝜅Kcod(𝜌
′) . (𝑣1 ∗, 𝜌 ′(𝑣2) ∗) ∈ EJ𝜏 / 𝜄K(𝛿⇑𝜌

′) [𝛼 ↦→𝜇 ],𝜗⇑𝜌′
𝜌′◦𝜌

}
J∀𝑎 : 𝜎. 𝜏K𝛿,𝜗𝜌

△
=

(𝑣1, 𝑣2)
������ ∀𝑊

′, 𝜌 ′
:𝑊 ⇀𝑊 ′,𝑤 :𝑊 ′⊥. ∀𝑙, 𝐼 . 𝐼 = (𝜌 ′ ↦→ J𝜎K𝛿⇑𝜌

′,𝜗⇑𝜌′
𝜌′◦𝜌 , 𝑙) ⇒

(𝑣1 𝑙, 𝜌 ′(𝑣2) 𝑎{𝑤 /𝑎}) ∈ EJ𝜏 / 𝜄K𝛿⇑𝜌
′,𝜗 [𝑎 ↦→𝐼 ]⇑𝜌′

(𝜌′◦𝜌) [𝑎 ↦→𝑤 ]


J𝜄K𝛿,𝜗𝜌

△
= ∅

J𝜀1 · 𝜀2K𝛿,𝜗𝜌
△
= J𝜀1K𝛿,𝜗𝜌 ∪ J𝜀2K𝛿,𝜗𝜌

J𝑎K𝛿,𝜗𝜌
△
=
{
(do𝑙 𝑣1,do𝜌 (𝑎) 𝑣2, {𝑙} , 𝜇)

�� ∃𝜈. 𝜗 (𝑎) = (𝜈, 𝑙) ∧ (𝑣1, 𝑣2, 𝜇) ∈ 𝜈 (id)
}

J𝜏1 ⇒ 𝜏2K𝛿,𝜗𝜌
△
=

{
(𝑣1, 𝑣2, 𝜌 ′ ↦→ J𝜏2K

𝛿⇑𝜌′,𝜗⇑𝜌′
𝜌′◦𝜌 )

��� (𝑣1, 𝑣2) ∈ J𝜏1K𝛿,𝜗𝜌
}

Fig. 8. Interpretation of types, effects, and signatures in the inter-semantic logical relation. We assume
𝜌 : 𝑋 ⇀𝑊 throughout.

Closure operators and the logical relation. We can now define the closure operators, analogous

to those defined for the generative semantics; these are presented in Figure 9. The closure for

expressions is a standard biorthogonal definition, although expanded with the explicit future-world

closure we have seen in the interpretation of types. Note that since the observation relation works

on complete — and thus, closed — programs, it is not indexed with any particular world. The

relation for evaluation contexts follows the pattern of Biernacki et al., with two observations, one

for values, and one for control-stuck expressions. The final two operators are more involved. In the

relation for control-stuck expressions, recall that the resumption 𝑅2 may well bind some variables

in addition to the set𝑊 given by the world; let’s call this set 𝑋 — and thus have 𝑅2 ∈ RCont
𝑋
𝑊
.

Thus, we need to interpret the effect 𝜀 in a larger world with a codomain of𝑊 ⊎ 𝑋 , which we can

achieve by composing 𝜌 with an inclusion map: we denote this composition with 𝜌𝑅 . We then need

to take some map 𝜌 ′
:𝑊 ⇀𝑊 ′

to ensure future-world closure — but the response type 𝜇 is defined

at𝑊 ⊎ 𝑋 . Thus, we take 𝜌 ′
𝑅
:𝑊 ⊎ 𝑋 ⇀𝑊 ′ ⊎ 𝑋 to be the obvious lifting of 𝜌 ′

. This allows us to

take expressions related by 𝜇, which we can now plug back into resumptions. As before, the later

operator ensures the entire definition is well-formed.

Before turning to the relation for handlers, let us consider the observation relation, as it is not

the standard notion of approximation as used in step-indexed relations. Usually, one builds an

asymmetric observation relation, which gives rise to a logical approximation relation — like we

did for the generative semantics. If one wants to reason about equivalence, it then suffices to take

a symmetric closure of the logical approximation. However, this is not the case here — as our

relation works across two semantics. What’s more, at the present we merely want to show that

the two semantics are equivalent. Thus, we introduce a weaker relation, that requires that the
two programs proceed in lock-step (at least for the reductions that actually require step-indexing).
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(𝑣1, 𝑣2) ∈ Arrow(𝜇, 𝜈) ⇐⇒ ∀𝜌. ∀(𝑢1, 𝑢2) ∈ 𝜇 (𝜌). (𝑣1 𝑢1, 𝜌 (𝑣2) 𝑢2) ∈ 𝜈 (𝜌)

(𝑒1, 𝑒2) ∈ EJ𝜏 / 𝜀K𝛿,𝜗𝜌 ⇐⇒ ∀𝜌 ′. ∀(𝐸1, 𝐸2) ∈ KJ𝜏 / 𝜀K𝛿⇑𝜌
′,𝜗⇑𝜌′

𝜌′◦𝜌 . (𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ Obs

(𝐸1, 𝐸2) ∈ KJ𝜏 / 𝜀K𝛿,𝜗𝜌 ⇐⇒ ∀(𝑣1, 𝑣2) ∈ J𝜏K𝛿,𝜗𝜌 . (𝐸1 [𝑣1], 𝐸2 [𝑣2]) ∈ Obs

∧ ∀(𝑒1, 𝑒2) ∈ SJ𝜏 / 𝜀K𝛿,𝜗𝜌 . (𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ Obs

(𝑅1 [𝑒1], 𝑅2 [𝑒2]) ∈ SJ𝜏 / 𝜀K𝛿,𝜗𝜌 ⇐⇒ ∃𝐿, 𝜇. (𝑒1, 𝑒2, 𝐿, 𝜇) ∈ J𝜀K𝛿⇑𝜌𝑅 ,𝜗⇑𝜌𝑅𝜌𝑅◦𝜌 ∧ (∀𝑙 ∈ 𝐿. free(𝑙, 𝑅1))

∧ ∀𝜌 ′. ∀(𝑒 ′
1
, 𝑒 ′

2
) ∈ 𝜇 (𝜌 ′

𝑅). (𝑅1 [𝑒 ′1], 𝜌 ′(𝑅2) [𝑒 ′2]) ∈ ▷EJ𝜏 / 𝜀K𝛿⇑𝜌
′,𝜗⇑𝜌′

𝜌′◦𝜌

(𝑥, 𝑘 . 𝑒1, 𝑥, 𝑘 . 𝑒2) ∈ HJ𝜎 ⊲ 𝜏 / 𝜀K𝛿,𝜗𝜌 ⇐⇒ ∀𝜌 ′, 𝜌↑, 𝜌↓. 𝜌↓ ◦ 𝜌↑ = id ⇒

∀(𝑢1, 𝑢2, 𝜇) ∈ J𝜎K𝛿⇑𝜌
↑◦𝜌′,𝜗⇑𝜌↑◦𝜌′

𝜌↑◦𝜌′◦𝜌 . ∃𝜇 ′.𝜇 = 𝜇 ′ ⇑ 𝜌↑

∧ ∀(𝑣1, 𝑣2) ∈ Arrow(𝜇 ′, 𝜌 ′′ ↦→ EJ𝜏 / 𝜀K𝛿⇑𝜌
′′◦𝜌′,𝜗⇑𝜌′′◦𝜌′

𝜌′′◦𝜌′◦𝜌 ).

(𝑒1{𝑢1 /𝑥}{𝑣1 /𝑦}, 𝜌 ′(𝑒2){𝜌↓(𝑢2) /𝑥}{𝑣2 /𝑦}) ∈ EJ𝜏 / 𝜀K𝛿⇑𝜌
′,𝜗⇑𝜌′

𝜌′◦𝜌

(𝑒1, 𝑒2) ∈ Obs ⇐⇒ (𝑒1 = () ∧ 𝑒2 →∗
()) ∨ (𝑒1 →∗

() ∧ 𝑒2 = ())
∨
(
∃𝑒 ′

1
, 𝑒 ′

2
. 𝑒1 → 𝑒 ′

1
∧ 𝑒2 → 𝑒 ′

2
∧ (𝑒2, 𝑒 ′2) ∈ ▷Obs

)
Fig. 9. Closure operators for expressions, evaluation contexts, control-stuck expressions, and handlers. In the
relation for control-stuck expressions 𝜌𝑅 denotes the inclusion map induced by 𝑅2, and 𝜌 ′

𝑅
— the lifting of 𝜌 ′

by this inclusion.

This is sufficient for our purpose, as the two semantics can reduce on both sides save for the label-

generating reduction in the generative semantics, which is simple from the reduction behaviour

point of view. If, on the other hand, we took the traditional approach, we would have to define

virtually the entire relation twice, for very little gain, at least given our goal.

Let us finally consider the relation for handlers. Note, first, that until now there was no point

where some technical obstacle could prevent us from extending the calculus — and the relation

— with signature polymorphism. The relation for handlers is the final place where something

could prevent us from successfully relating polymorphic signatures: and indeed, this is the case.

The problem stems from a similar issue as the one we explored with control-stuck terms. Now,

the arguments of the handler, 𝑢1 and 𝑢2, passed by the do operation, come from within some

resumption — and thus, from a larger world. Moreover, this is also the case for the response type 𝜇.

However, the reified resumptions, 𝑣1 and 𝑣2, need to be interpreted at the smaller world, even

though their arguments should be related by 𝜇. How to square this circle? We require that 𝑢1, 𝑢2
and 𝜇 come from a world given by a composition of maps, the last of which is invertible on the left

— which matches the intuition that it stems from an inclusion induced by the resumption. Then, for

the handlers to be related, we require that 𝜇 is equal to some semantic type moved forward by 𝜌↑
.

This is the case if 𝜎 is a simple signature (of the form 𝜏1 ⇒ 𝜏2), but not if it were polymorphic — as

in that case we are free to use the variables introduced by 𝜌↑
in the instantiation of the quantifier.

Once we have 𝜇 ′ on hand, we can assume that the reified resumptions are related at the appropriate

type — for the sake of clarity, we introduce an auxiliary definition of “semantic arrows” — and

prove that the bodies of the handlers are related, given the related arguments and resumptions.

Like in the simpler relation, we need to give the interpretations of the term- and instance-variable

contexts, which differs little from the previous case. The only distinction is the fact that we only
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signature State (X : Type) =

| put : X => Unit

| get : Unit => X

let update f = put (f (get ()))

handle ‘x in handle ‘y in

put ‘y False;

update ‘x (fn s => if get ‘y () then s - 6 else s + 29);

get ‘x ()

with hState True with hState 13

Fig. 10. Multiple state cells using lexically scoped handlers

need one substitution of runtime instances for instance variables, for the generative component of

our relation. We get:

JΘK𝛿𝜌
△
=

{
(𝜗, 𝜂)

��� ∀𝑎 ∈ dom(Θ). 𝜗 (𝑎) = (JΘ(𝑎)K𝛿,𝜗𝜌 , 𝜂 (𝑎))
}

JΓK𝛿,𝜗𝜌
△
=

{
(𝛾1, 𝛾2)

��� ∀𝑥 ∈ dom(Γ). (𝛾1 (𝑥), 𝛾2 (𝑥)) ∈ JΓ(𝑥)K𝛿,𝜗𝜌
}
,

and finally we can define the logical relation (as previously, we only give the relation for the

expressions, eliding values and handlers):

Δ;Θ; Γ ⊨ 𝑒1 ≈ 𝑒2 : 𝜏 / 𝜀 ⇐⇒ ∀(𝑊, 𝜌) ∈ Worlddom(Θ) .

∀𝛿 ∈ JΔK𝑊 , (𝜗, 𝜂) ∈ JΘK𝛿𝜌 , (𝛾1, 𝛾2) ∈ JΓK𝛿,𝜗𝜌 .

(𝜂 (𝛾1 (𝑒1)), 𝛾2 (𝑒2)) ∈ EJ𝜏 / 𝜀K𝛿,𝜗𝜌
We can now show that our relation is a compatible congruence, getting the fundamental theorem

of logical relations, and, as its corollary (together with adequacy of our observation), the equivalence

of the two semantics:

Theorem 4 (Fundamental). Any well-typed source expression 𝑒 is logically related with itself
across the two semantics, i.e., if Δ;Θ; Γ ⊢ 𝑒 : 𝜏 / 𝜀, then we have Δ;Θ; Γ ⊨ 𝑒 ≈ 𝑒 : 𝜏 / 𝜀.

Theorem 5 (Eqivalence). For any well-typed, closed, pure program 𝑒 , its evaluation in open
semantics terminates iff its evaluation in the generative semantics terminates, i.e., if ·; ·; · ⊢ 𝑒 : 𝜏 / 𝜄,
then (∃𝑣 . 𝑒 →∗

𝑜 𝑣) ⇐⇒ (∃𝑣 . 𝑒 →∗
𝑔 𝑣).

7 PROGRAMMINGWITH SCOPED EFFECTS
Having established the sensible behaviour of our generative semantics, we have implemented an

experimental programming language based on our calculus. Thus, we can offer some preliminary

observations regarding the practicality of our approach. In this section, we consider some simple

examples that highlight how programming with lexically scoped effects can be cleaner and more

modular, if somewhat more restrictive than the full power of dynamically scoped effects.

We begin with a simple example that uses two cells of mutable state, presented in Figure 10.

The definition of the signature for state is standard: it consists of two operations, put and get,
respectively setting and getting the state cell. We then define a function update, which calls

its argument with the current value of the state cell, and stores the result. Note that since this

function only uses a single instance of state, we never need to mention it: it is clear from the

context that update should introduce an implicit instance of the state effect, and call both get
and put with this instance. The type of update could be given, in the syntax of our calculus, as

∀𝛼 :: T. ∀ 𝛽 :: E. ∀𝑎 : State 𝛼. (𝛼→𝛽𝛼)→𝑎 ·𝛽 unit. Note that the instantiation of 𝛽 , and thus the

potential interaction between the modified cell of state and the function passed as an argument is

left to the callee. In the client code snippet that follows, we introduce two instance variables, ‘x
and ‘y (a backtick before an identifier makes it an instance variable), for two cells of state, and
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signature rec CMT (E : Effect) =

| fork : (forall (‘cmt : CMT E),

Unit ->[‘cmt, E] Unit) => Unit

| yield : Unit => Unit

data rec Process (E : Effect) =

| Proc of (Unit -> Queue (Process E) ->[E] Unit)

let continue pq =

match Queue.pop pq with

| None => ()

| Some(pq, Proc proc) => proc () pq

end

let hCMT () =

let rec hCMT_rec pq =

handler

| fork proc => fn pq =>

handle proc () with

hCMT_rec (Queue.push (Proc resume) pq)

| yield () => fn pq =>

continue (Queue.push (Proc resume) pq)

| return () => fn pq => continue pq

| finally f => f pq

end

in

hCMT_rec Queue.empty

Fig. 11. Simple cooperative multithreading via effect handlers

use both operations of the state effect, and update – but this time necessarily giving the instance

arguments explicitly. Since in this case, under a pair of handlers, the instance used would not

necessarily be clear from context, our typechecking algorithm would protest if we omitted the

instance arguments.
6
Note also that the argument passed to the update function itself uses a state –

but we can be certain that the two cells do not interfere by virtue of their different names bound

by the two handlers: thus, with the standard definition of handlers for state, hState, discussed in

Section 1, the snippet evaluates to 42.

As a more sophisticated example, let us consider a simple cooperative concurrency effect, adapted

from [Convent et al. 2019], presented in Figure 11. The signature is parameterised by the type of

effects that the concurrent processes can raise (which allows for communication channels), and

consists of two operations: fork, which takes a thunk (itself parameterised with an instance of

the concurrency effect) as an argument, and yield, which allows the scheduler to interfere. The

scheduler is implemented using a queue of suspended processes, which are started in a breadth-first

pattern and stopped at yield signals. Note that the somewhat sophisticated handler is not annotated

with signatures, since, once again, the single instance considered in its definition is clear from

context. This form of concurrency can be used to implement sophisticated patterns when used in

conjunction with other effects: Convent et al. show an implementation of communicating actors,

and one could easily encode groups of processes that can be terminated simultaneously and other

similar patterns.

8 RELATEDWORK
8.1 Managing Effects in Different Settings
The problem of managing effects is not specific to handlers of algebraic effects. It arises whenever

one deals with user-defined effects or any form of instances of predefined effects. A well-known

example are generative polymorphic exceptions in SML [Milner et al. 1997]. To ensure type safety,

each time a declaration of an exception is evaluated, it actually gives a new type of exceptions,

quite similarly to our generative semantics.

6
A sufficiently sophisticated algorithm might be able to determine that the two cells of state have incompatible types, and

the instances could potentially be deduced automatically. Part of the appeal of the instance approach is that irrespective of

the algorithm, this remains a mere optimisation: we can always fall back to passing the instances explicitly when this would

increase readability or the type-checker cannot ensure that the instances are clear from context.
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The problem of managing effects was often taken into account when considering type-and-effect

systems for particular built-in effects [Lucassen and Gifford 1988; Talpin and Jouvelot 1994]. One

example is region-based mutable store, in which one wants to be able to dynamically allocate,

deallocate, and refer to regions, while statically keeping track of their liveness via a type-and-effect

system. The fact that liveness can be tracked via lexically scoped region variables is explored, for

instance, by Birkedal et al. [1996].

Another approach to effects is given by monads, first used to give a denotational semantics of

effects by Moggi [1991], and later popularised as a programming abstraction by Wadler [1990;

1992]. The usual way to achieve modularity in programming with monads is rather ad hoc by using

monad transformers [Liang et al. 1995]. One way to think about a stack of monad transformers

is that it corresponds to a row of effects in a row-based type-and-effect system. The 𝑛-th layer

of the stack can be accessed via an 𝑛-fold composition of the lift function. One can also access

the first “instance” of a particular effect using type classes that couple particular operations and

particular monads using the á la carte technique [Swierstra 2008]; see also [Gibbons and Hinze 2011].
To manage multiple occurrences of the same monad on the stack, Snyder and Alexander [2010]

introduced a technique based on global names implemented with phantom types, while Schrijvers

and Oliveira [2011] introduced monad views that allow functionality similar to effect subtyping.

Recently, Devriese [2019] proposed a technique of managing effects in Haskell based on effect

polymorphism and explicit type-class dictionary applications to distinguished between instances

of effects. We leave a more detailed comparison with this approach as future work.

8.2 Managing Algebraic Effects
Row-based type-and-effect systems distinguish “instances” of effects by their position in the effect

row. One way to manage them is to use coercions [Biernacki et al. 2019] or adaptors [Convent et al.

2019], which, however, place the burden of keeping track of which operation is meant for which

position, as well as manually permuting the row to agree the effects of two subcomputations, on

the programmer. Simply using names, as in our approach, makes the code much more readable

and modular. It is also more amenable for efficient implementation, as coercions/adaptors have

nontrivial computational content. On the flip side, our instances are a bit less expressive; for

example, it is not immediately clear how to use them to implement the encoding of state via reader

and writer, which relies on dynamic switching of handlers [Biernacki et al. 2018].

We also note that polymorphism in ML-style type systems, especially in the context of value and

purity restrictions, is an active area of research [Kammar and Pretnar 2017; Sekiyama and Igarashi

2019]. In our calculus, we employ the purity restriction, as described in Section 3.

Except for the languages with built-in effect handlers mentioned in the introduction, we should

also note an implementation of a DSL embedded in Idris by Brady [2013], which supports effect

tracking through dependent types. In order to make it possible to program consciously with different

instances of the same effect, the DSL allows for static labelling of the effects listed in the type of

a given expression. Such a solution is applicable in simple cases, but suffers from the problems

described in Section 2.

8.3 Lexically Scoped Effects
As mentioned in the introduction, lexically scoped effects are not a novel idea in general, but

they have been employed to effect handlers only recently. The examples that we are aware of

are a Java library by Brachthäuser et al. [2018] and the calculus for effect tunnelling by Zhang

and Myers [2019]. Both these solutions are given in a “handler-passing” style, in which a handler

lives inside the delimited context, making these calculi similar in feeling to the shift0/reset control

operators rather than effect handlers as usually presented in the literature.
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Zhang and Myers solve a problem of parametricity of effect polymorphism [Biernacki et al. 2018,

Example 2.4]. Our results subsume their solution, and the general technical ideas in both papers

are actually very much alike: to use lexically scoped variables to couple operations and handlers.

The difference is that Zhang and Myers’s calculus (equipped with an operational semantics akin to

our open semantics) has a rather restricted type system. In particular, their effect signatures can be

neither effectful nor polymorphic. They also construct a logical relation for their calculus, which is

much simpler than the one we introduce to deal with the open semantics, but their relation seems

to rely on the type restrictions in a nontrivial manner. Thus, it does not seem to be extendable to

more advanced but practical language features. In the Coq formalisation of their results, however,

Zhang and Myers use a semantics that is closely related to our generative semantics: as discussed in

Sections 4 and 5, this leads to a discrepancy between the semantics formalised in the development

and the one presented in the paper in the untyped case. Since the logical relation works over

untyped terms, we fear that this means the formalisation is not adequate with respect to the

presentation in the paper – although by itself this does not invalidate the results as presented.

8.4 Logical Relations for Generative Semantics
As already mentioned, generative semantics has found applications in the study of polymorphic

exceptions and dynamically allocated mutable references. More recently, generative semantics has

been defined, and investigated, for polymorphic blame calculi [Ahmed et al. 2017; Toro et al. 2019]

that marry polymorphic static typing with dynamic typing. In such semantics it is type instances

that are dynamically generated and have to be kept track of in the logical relation that is meant to

ensure parametricity of the type system. Such relations, unsurprisingly, are given in the Kripke

style and their overall underlying structure resembles that of the logical relations for ML-style

mutable references [Ahmed et al. 2010, 2009] as well as of the one we present in Section 6.1.

9 CONCLUSION
In this paper, we propose a solution to the practical problem of managing instances in languages

with effect handlers. The advantage of using lexically scoped effects is that the resulting calculus

is simple and intuitive on the level of syntax and types – we dare say simpler than calculi with

row-based type systems. Obstacles begin with considerations on possible operational semantics,

and the main theme of this paper is exploring the space of design choices, inhabited by (perhaps

among others) the open and generative semantics. Importantly, we try to take into account both

the theoretical properties and practical aspects of programming with lexically scoped instances.

We put much emphasis on understanding parametric polymorphism in the presence of effects.

Polymorphism is known to be a major troublemaker, hence the need for the value restriction,

generative exceptions, and similar restraints in non-pure functional languages, which might not

be obvious to the programmer at first, but are necessary to maintain type safety. We hope that

our novel approach to Kripke-style logical relations will allow us to reason about the marriage

of polymorphism and effects in other contexts as well. An obvious example would be reasoning

about region-based store in which the name or address of a deallocated region is not presumed

definitively dead, but can be reused, just like an instance variable name in our open semantics.
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