notatki do zajeé (2) 9 paZdziernika 2006 .

ALGORYTMY I STRUKTURY DANYCH

SORTOWANIE

Instytut Informatyki Uniwersytetu Wrocawskiego Pawel Rzechonek

Zadania porzadkowe (ang. ordering problems) to klasa probleméw, w ktérych zbiér danych
nalezy w pewien sposéb uporzadkowaé lub co§ w tym zbiorze znalezé. Do probleméw porzadko-
wych zalicza sie przede wszystkim sortowanie i wybor mediany.

Dane sa przewaznie pamietane w tablicach lub w plikach, tak ze z kazdym elementem jest
zwiazana pozycja (ang. position) w zbiorze, na ktérej on wystepuje.

Elementy zbioru danych pochodza z okreslonego uniwersum z porzadkiem liniowym, aby
kazde dwa mozna bylo poréwnaé za pomocs relacji <. Czasami jeden element moze by¢ duzym
agregatem réznych informacji. Wtedy wyrdznia sie jedno pole zwane kluczem (ang. key), na
ktorym jest okre$lona relacja < i ktore jest reprezentantem agregatu w operacji poréwnywania.

W problemach porzadkowych nie zaktada si¢ uporzadkowania zbioru danych — przewaznie sa
to zbiory nieuporzadkowane, albo czeéciowo uporzadkowane. Spdjrzmy na n-elementowy zbidr
danych jako na ciag elementéw A = (ayg, ..., a,—1). Miara nieuporzadkowania w takim ciagu jest
liczba wystepujacych w nim inwersji (ang. inversion), czyli takich par (4,5), 2 0 <i < j <n
oraz a; > aj:

{(,3) 10<i<j<n,a>a)

O ciagu powiemy, ze jest uporzqdkowany (ang. ordered), gdy jest niemalejacy:

Vo<i<n:a_1 <a;

1 Podstawowe pojecia

Méwimy, ze algorytm porzadkujacy dziala w miejscu (ang.in—place), jesli podczas dzialania
algorytm zuzywa tylko stala liczbe dodatkowych komérek pamieci. Poza zbiér z danymi mozna
wiec wyprowadzié¢ tylko stala liczbe elementéw w trakcie dzialania algorytmu.

Moéwimy, ze algorytm porzadkujacy jest stabilny (ang. stable), jesli po zakohczeniu dziala-
nia algorytm zachowuje wzgledne ustawienia elementéw réwnych Algorytm taki moze zmieniaé
pozycje elementow w zbiorze z danymi, ale elementy o réwnych kluczach zachowuja poczatkowe
ustawienia wzgledem siebie.

O algorytmach porzadkujacych bedziemy zakladali, ze mozemy mie¢ bezposredni dostep
(ang. random access) do kazdego elementu, ze elementy moga by¢ jedynie poréwnywane (ang.
compare) 1 przepisywane (ang. move) badZ zamieniane (ang. erchange) miejscami. Za-
uwazmy, ze jedna zamiana miejscami dwoch elementéw wymaga trzech przepisain.

2 Sortowanie

Sortowanie (ang. sorting) to problem bardzo czesto rozwiazywany na komputerze. Wiaze
sie to z faktem, ze duzo szybciej mozna znajdowaé informacje w zbiorach uporzadkowanych niz
w nieuporzadkowanych.

Problem sortowania mozna zdefiniowaé¢ nastepujaco.

Dane: W n-elementowej tablicy T[0...n — 1] zapisany jest nieuporzadkowany ciag wartosci
aQy ey Qp—1-

Zadanie: Dane w tej tablicy nalezy tak poprzestawia¢, aby as, < ... < a,,_,, gdzie o jest
pewna permutacja zbioru n-elementowego.

Ograniczenia: Porzadkujac dane mozemy jedynie poréwnywac elementy i przepisywac je badz

zamienia¢ miejscami.

2.1 Wyszukiwanie

Najczesciej wykonywana operacja na zbiorach z danymi jest wyszukiwanie (ang. searching)
informacji wzgledem zadanego klucza. Problem ten mozna zdefiniowaé¢ nastepujaco.

Dane: Zadany jest klucz x oraz n-elementowa tablica T'[0...n — 1] z elementami aq, ..., Gp—1.
Zadanie: Nalezy znalezé pozycje w tablicy, na ktérej znajduje sie element o wartosci x.
Ograniczenia: Mozna jedynie poréwnywaé klucz z elementami w tablicy.

Najprostszym rozwiazanie jest przegladanie tablicy od poczatku do konca i poréwnywanie jej
elementow z kluczem, czyli wyszukiwanie sekwencyjne (ang. sequence searching).

function SEQ-SEARCH (keytype T'[0...n — 1], key x) — int
{
fori=0...n—1do
if T[i].key = = then return 7;
return null;

Dzialanie procedury SEQ-SEARCH wymaga wykonania 1 poréwnania w najlepszym przy-
padku, n poréwnaf w najgorszym przypadku, oraz ~ 3 poréwnafn w przypadku $rednim gdy
szukany element znajduje si¢ w tablicy.

Duzo szybszy algorytm mozna skonstruowaé, gdy dane w tablicy sa uporzadkowane. Oto
zmienione zalozenie dotyczace postaci danych.

Dane: Zadany jest klucz x oraz n-elementowa tablica T'[0...n — 1] z elementami ag, ..., an—1
uporzadkowanymi w kolejnosci niemalejacej ag < ... < ap_1.

Korzystajac z informacji o uporzadkowaniu danych mozna zastosowaé algorytm wyszukiwa-
nia binarnego (ang. binary searching).

function BIN—SEARCH (keytype T[0...n — 1], key x) — int
{
int a — 0; // poczatek obszaru poszukiwan
int b« n; // koniec obszaru poszukiwari
int m — |22 // $rodek obszaru poszukiwari
while a < b do
{
compare T[m].key? x
case < thena«— m+1;
case > then b — m;
case = then return m;
mo— |45];
}

return null;

Procedura BIN-SEARCH wykona nie wiecej niz |logn+1] poréwnan w najgorszym przypadku.

2.2 Elementarne metody sortowania
2.2.1 Sortowanie babelkowe

Algorytm sortowania bgbelkowego (ang. bubble sort) jest najprostszym algorytmem sor-
towania. Idea sortowania babelkowego opiera sie na redukcji rozmiaru problemu o 1 poprzez
przesuniecie na koniec elementu maksymalnego. Przegladajac tablice od poczatku do konca
dbamy o to, aby element lokalnie najwiekszy zawsze znajdowal si¢ na lokalnym koncu. Operacje
przesuwania powtarzamy n — 1 razy, az zadanie zredukuje si¢ do rozmiaru 1.

procedure BUBBLE-SORT (key T'[0...n — 1])
{
for k=n—-1...1do
fori=1...kdo
if T[i — 1] > T[i] then EXCHANGE (T, i — 1, 7);

W algorytmie sortowania babelkowego wykonujemy "(”271) poréwnan w kazdym przypadku

i co najwyzej "("2_1) zamian elementéw. Czas dziatania algorytmu jest wiec rzedu ©(n?).

2.2.2 Sortowanie przez zamiane

Algorytm sortowania przez zamiane (ang. exchange sort) jest naturalng modyfikacja
sortowania babelkowego. Idea sortowania przez zamiane takze polega na redukcji rozmiaru pro-
blemu o 1 poprzez ustawienie na koncu elementu maksymalnego. Teraz jednak zamiast przesuwaé
element lokalnie najwiekszy coraz dalej, to przegladamy tablice i po napotkaniu elementu wiek-
szego od stojacego na koncu dokonujemy zamiany. Operacje przenoszenia na koniec elementu
maksymalnego powtarzamy n — 1 razy, az zadanie zredukuje si¢ do rozmiaru 1.

procedure EXCHANGE—SORT (key T'[0...n — 1))
{
for k=n—-1...1do
fort=0...k—1do
if T[i] > T[k] then EXCHANGE (T, i, k) ;

n(n—1)
2

W algorytmie sortowania przez zamiane wykonujemy
Czas dziatania algorytmu jest wiec rzedu ©(n?).

poréwnan w kazdym przypadku.

2.2.3 Sortowanie przez wybieranie

Algorytm sortowania przez wybieranie (ang. selection sort) jest z kolei rozwinieciem sor-
towania przez zamiane. Idea sortowania przez wybieranie polega na redukcji rozmiaru problemu
o 1 poprzez wstawienie na koniec elementu maksymalnego. Najpierw przegladamy calg tablice
aby wyznaczy¢ pozycje elementu najwiegkszego a nastepnie zamieniamy go z ostatnim. Operacje
wstawiania na koniec elementu maksymalnego powtarzamy n — 1 razy, az zadanie zredukuje sie
do rozmiaru 1.

procedure SELECTION—SORT (key T[0...n — 1])

{

fork=n—-1...1do
{
int m «— 0; // pozycja elementu maksymalnego
fori=1...kdo
if T[i] > T[m] then m «— i;
if m < k then EXCHANGE (T, m, k) ;

W algorytmie sortowania przez wybieranie wykonujemy % porownan w kazdym przy-

padku, ale tylko co najwyzej n — 1 zamian elementéw. Czas dzialania algorytmu jest wigc rzedu

O(n?).

2.2.4 Sortowanie przez wstawianie

Algorytm sortowania przez wstawianie (ang. insertion sort) polega na wstawianiu ko-
lejnych elementéw do uporzadkowanego fragmentu. Idea sortowania przez wstawianie jest we-
pchniecie na wlasciwa pozycje ostatniego elementu do posortowanej poczatkowej czesci. W ten
sposéb zwiekszamy za kazdym razem dlugo$é posortowanej czesci tablicy o 1. Operacje wsta-
wiania elementu do posortowanego poczatkowego fragmentu tablicy powtarzamy n — 1 razy, az
posortujemy wszystkie elementy.

procedure INSERTION—SORT (key T'[0...n — 1])

{

fork=1...n—1do

{
int p—k;
while p > 0 A T[p — 1] > T'[p] do EXCHANGE (T, p — 1, p);

W algorytmie sortowania przez wstawianie wykonujemy w poréwnan w najgorszym przy-

padku i okoto %2 w przypadku §rednim. Czas dzialania algorytmu jest wiec rzedu ©(n?).

2.3 Sortowanie Shella

Sortowanie Shella (D.L. Shell, 1959) jest prostym rozszerzeniem sortowania przez wstawia-
nie, ktore przyspiesza proces sortowania dzieki przestawianiu odleglych a nie tylko sasiadujacych
elementéw.

Definicja 1 h-pocigg ciggu A = (ag,aq,-..) to podcigg zlozony z elementdw oddalonych od siebie
o wielokrotnos$é liczby h.

Definicja 2 Cigg A = (ag,a1,...) jest h-posortowany, gdy wszystkie jego h-podciggi sq posorto-
wane.

Ciag n-elementowy zawiera co najwyzej h réznych h-podciagdéw: gdy n < h to ciag zawiera
tylko n podciagéw jednoelementowych, w przeciwnym przypadku jest ich doktadnie h.

Twierdzenie 3 Przeprowadzenie g-sortowania w ciggu h-posortowanym nie zniszczy h-posorto-
wania.

Twierdzenie to jest podstawa sortowania Shella. Otwartym problemem pozostaje odpowiedni
dobér przyrostéw, czyli ciagu wartosci H = (hg, hy, . ..), wedlug ktérego nalezy przeprowadzaé
kolejne sortowania, przy czym hg = 1 jest ostatnim przyrostem w sortowaniu.

procedure SHELL—SORT (key T'[0...n — 1])
{
H — (ho,h1,...); // cigg przyrostéw
k — max{i | h; <n};
while £ > 0 do
{
h — hg;
forg=0...h—1do
(posortuj metodg INSERTION—SORT h-podciqg rozpoczynajgcy sie od T|[g]);
k—k-—1;

Twierdzenie 4 Sortowanie n-elementowego ciggu metodg Shella, w ktérym zasosuje sie dwu-
elementowy cigg prayrostéw (1, | ¢/n]) bedzie dziatalo w czasie O(n°/3).

Stosujac sortowanie Shella z tylko dwoma skokami mozna istotnie przyspieszy¢ proces sorto-
wania w stosunku do sortowania przez proste wstawianie.

Twierdzenie 5 Sortowanie n-elementowego ciggu metodg Shella, w ktérym zasosuje sie dwu-
elementowy cigg przyrostéw (1, |§/n)) bedzie dzialato w czasie O(n°/3).

Jeszcze lepsze wyniki mozna uzyska¢ wprowadzajac wieksza ilos¢ skokéw. Bardzo dobrze
zachowuje si¢ sekwencja skokéw 1, 3, 7, 15, 31...(T.N.Hibbard, 1963), ktéra moZna zapisaé
nastepujacym wzorem:

hi = 27;+1—1 dla ZZO

Twierdzenie 6 Sortowanie n-elementowego ciggu metodg Shella, w ktorym zasosuje sie cigg
prazyrostéw Hibbarda (1, 8, 7, 15, 31...) bedzie dzialalo w czasie O(n3/?).

Inny dobry ciag to sekwencja skokéw 1, 4, 13, 40, 121...(D.E. Knuth, 1969), kt6ra mozna
zdefiniowaé rekurencyjnie:
hg = 1

Twierdzenie 7 Sortowanie n-elementowego ciggu metodg Shella, w ktorym zasosuje sie cigg
prazyrostéw Knutha (1, 4, 13, 40, 121...) bedzie dzialalo w czasie O(n3/?).

Dzialanie algorytmu Shella mozna jeszcze poprawié¢ stosujac sekwencje skokéw 1, 5, 19, 41,
109. .. (R. Sedgewick, 1986), ktéra wyraza si¢ wzorem:

hoo L9 2t —9.21/2 41 dla parzystych i
P 8-20—6-20t1D/2 11 dla nieparzystych i

Twierdzenie 8 Sortowanie n-elementowego ciggu metodq Shella, w ktorym zasosuje sie cigg
prazyrostéw Sedgewicka (1, 5, 19, 41, 109. ..) bedzie dzialalo w czasie O(n*/3).

Duzo lepszy wynik mozna uzyskaé, gdy wykorzysta sie fakt, ze sortowanie przez wstawia-
nie zastosowane do ciagu 2-uporzadkowanego i 3-uporzadkowanego bedzie dzialalo w liniowym
czasie.

Fakt 9 Jesli zastosujemy metode sortowania przez proste wstawianie do ciggu, ktory jest jed-
noczesnie 2-posortowany i 3-posortowany, to kazdy element przesunie site co najwyzej o jedng

pozycje.

Jedli ciag jest 4- i 6-uporzadkowany, to 2-sortowanie wykona sie na tym ciagu w liniowym
czasie; a jesli ciag jest 6- i 9-uporzadkowany, to rowniez w liniowym czasie wykona sie na tym
ciagu 3-sortowanie. Kontynuujac to rozumowanie mozna skonstruowaé¢ nastepujaca sekwencje
przyrostéw (V. R.Pratt, 1971): 1, 2, 3, 4, 6, 9, 8, 12, 18, 27...

1
2 3
4 6 9
8 12 18 27
16 24 36 o4 81

Wartosci ciagu przyrostow Pratta mozna odczytaé z powyzszego trdjkata, a ogdlna postaé kaz-
dego wyrazu to: S
h(i2+i)/2+j = 2"7.3 dlai= 0,1 Orazj =0...17

Twierdzenie 10 Sortowanie n-elementowego ciggu metodq Shella, w ktorym zasosuje sie cigg
prayrostéw Pratta (1, 2, 8, 4, 6, 9, 8, 12, 18, 27...) bedzie dzialalo w czasie O(n log® n).

3 Scalanie

Scalanie (ang. merging) to laczenie dwoch posortowanych ciagdéw w jeden posortowany ciag.
Problem ten mozna zdefiniowaé nastepujaco.

Dane: Mamy dwie tablice V]0...p—1] 1 W[0...q — 1] i elementy w obu tablicach sa uporzad-
kowane, czyli V[0] < ... <V[p—-1]1iW[0] < ... <W]g—1].

Zadanie: Dane z obu tablic nalezy uporzadkowac.
Ograniczenia: Porzadkujac dane mozemy jedynie poréwnywaé elementy i przepisywaé je badz
zamienia¢ miejscami.
3.1 Scalanie tradycyjne

Tradycyjna procedura scalajaca dziata podobnie do sortowania przez wybdér. W kazdym
kroku wybierany jest najmniejszy element spo$réd obu ciagdéw i przenoszony do tablicy wyniko-
wej; w ten sposob rozmiar problemu jest redukowany o 1 w kazdym przebiegu petli.

procedure TRADIT-MERCE (key V[0...p— 1], key W[0...q— 1], key R[0...p+ ¢ —1])
{
i < 0; // wartownik w tablicy V
Jj < 0; // wartownik w tablicy W
while i <pAj<qdo
if V[i] < W)
then { R[i + j] < VI[i]; i+ +; }
else { R[i +j] = W[jl;j++;:}
whilei <pdo { Rli+j] — VI]i];i++; }
while j <gdo { R[i +j] < W[j]; j++; }

Scalanie tradycyjne jest stabilne, ale nie dziala w miejscu. Podczas dziatania tego algorytmu
wykonywanych jest p + q przepisan elementéw i co najwyzej p+ ¢ — 1 poréwnan. Czas dzialania
scalania tradycyjnego jest wiec liniowy O(p + q).

3.2 Scalanie Kronroda

Oryginalna procedura Kronroda scala ciggi o dowolnych diugosciach. Tutaj zostanie przed-
stawiona uproszczona wersja tego algorytmu, co pozwoli skupi¢ sie na idei samego scalania a nie
na szczegoétach technicznych.

Dane: Mamy tablice T[0...p + ¢ — 1], w ktérej dwie czesci tej tablicy sa posortowane, czyli
TO] < ...<Tlp—1] oraz T[p] < ... < T[p+ q — 1]. Dodatkowo r = /p + ¢ jest liczba
naturalna, oraz wielkosci posortowanych fragmentéw sa podzielne przez r, czyli r|p i r|q.

procedure SIMPLE-KRONROD-MERGE (key T'[0...p+ ¢ — 1])

{

r— D+ q; // wielkosé bloku
(podziel dane w tablicy T na bloki o rozmiarze r,

polem kluczowym w kazdym bloku niech bedzie pierwszy najmniejszy element) ;
(posortuj bloki metodg SELECTION—SORT) ;
fori=1...r—3do

(scal dwa sgsiednie bloki (i—1)-szy oraz i-ty,

wykorzystujgc dwa ostatnie bloki jako bufor na wynik) ;

(posortuj trzy ostatnie bloki metodg SELECTION—SORT) ;

Scalanie Kronroda dziala w miejscu, ale nie jest stabilne. Czas dzialania algorytmu jest
liniowy ©(p + q).

3.3 Sortowanie przez scalanie

Sortowanie przez scalanie (ang. merge—sort) jest algorytmem rekurencyjnym. Metoda ta
dzieli dane na dwie réwne (z dokladnoscia do 1) czesci, sortuje kazda z nich (rekurencyjnie) a na
koniec scala posortowane czesci (wykorzystujac okreslona procedure scalajaca).

procedure MERGE-SORT (key T[0...n — 1])
{
if n < 2 then return;
m « | 5|; // érodek tablicy
MERGE-SORT (T'[0...m —1]);
MERGE—SORT (T'[m...n —1]);
MERGE (T'[0...m —1],Tm...n—1]); // okreslona procedura scalajgca

Wiele wlasnosci sortowania przez scalanie zalezy od zastosowanej procedury scalajacej. Sta-
bilnosé tego algorytmu zalezy od stabilno$ci scalania. Czas potrzebny na wykonanie sortowania
przez scalanie takze zalezy od czasu scalania; gdy zalozymy, ze scalanie dziala w czasie O(n) to
czas dzialania sortowania wyraza si¢ nastepujaca zaleznoscia rekurencyjna:

{T(U)ZT(l) = 0()
Tn) = T(3)+T(3D)+0(m) dla n=>1

Tak wigc czas dzialania tego algorytmu wynosi O(n logn).

4 Podzial

Podziat (ang. partition) danych wedlug zadanej wartosci polega na odseparowaniu elemen-
tow mniejszych od wartosci dzielacej i elementéow wigkszych od niej. Warto$¢, wedlug ktorej
dzielimy zbiér z danymi nazywa sie piwotem (ang. pivot). Dokladna definicja tego problemu
jest nastepujaca.

Dane: W n-elementowej tablicy T[0...n — 1] zapisany jest nieuporzadkowany ciag wartosci
ag,---,0,_1. Zadany jest takze piwot piv, wedlug ktérego bedzie dokonywany podziat
tablicy.

Zadanie: Dane w tej tablicy nalezy rozdzieli¢ na elementy mniejsze od piwota i wigksze.

Ograniczenia: Rozdzielajac dane mozemy jedynie porownywaé elementy i przepisywac je badz
zamienia¢ miejscami.

Rozwazajac dalej problem podzialu, ograniczymy posta¢ danych do przypadku, w ktérym
piwot jest pierwszym elementem tablicy.

Dane: W n-elementowej tablicy T[0...n — 1] zapisany jest nieuporzadkowany ciag wartosci
ag,-..,a,—1. Piwot, wedlug ktérego bedzie dokonywany podzial tablicy, jest pierwszym
elementem w tablicy piv = T'[0].

4.1 Podzial Lomuta

Bardzo prosty algorytm przegladajacy tablice z jednej strony. W trakcie dzialania przenosi
on elementy mniejsze od piwota do bloku na poczatku tablicy.

procedure LOMUTO-PARTITON (key T'[0...n — 1]) — int
{
piv «— T[0]; // piwot
Il —1; // wartownik bloku elementéw mniejszych od piwota
fori=1...n—1do
if T[i] < pivthen { T[l] & T[]; 1+ +; }
T[0] « T[l —1];
return/ —1;

Algorytm Lomuta nie jest stabilny i dziala w miejscu. Wykonuje on n — 1 poréwnan, wiec
jego czas dzialania jest liniowy O(n).

4.2 Podzial Sedgewicka

Prosty algorytm przegladajacy tablice z obu stron. W trakcie dzialania przenosi on elementy
mniejsze od piwota do bloku na poczatku tablicy a wieksze do bloku na koncu tablicy.

procedure SEDGEWICK—PARTITON (key T'[0...n —1]) — int

{
piv — T[0]; // piwot
1 —0; // wartownik bloku elementéw nie wiekszych od piwota
g «— n; // wartownik bloku elementéw nie mniejszych od piwota
loop
{
do g — —; while T[g] > piv;
if g = [then break;
do ! + +; while T[l] < piv;
if g <[then break;
T[] < Tlgl;
}
T[0] < Tlgl;
return g;

Algorytm Sedgewicka nie jest stabilny i dziala w miejscu. Wykonuje on co najwyzej n + 1
poréwnan, wiec jego czas dzialania jest liniowy O(n).

4.3 Sortowanie szybkie (przez podzial)

Sortowanie szybkie (ang. quick—sort) nazywane réwniez sortowaniem przez podziat
jest algorytmem rekurencyjnym. Metoda ta najpierw dokonuje podzialu danych (wykorzystujac
okreslona procedure dzielaca) wzgledem losowo wybranej sposréd danych wartosci, a potem
kazda z wydzielonych czesci sortuje (rekurencyjnie).

procedure QUICK—SORT (key T'[0...n — 1))
{
if n < 2 then return;
piwv — T[(losowa w artos$é z zakresu 0...n —1)]; // losowy wybdr piwota
m <« PARTITION (T, piv) ; // podzial tablicy wedlug piwota
QUICK—SORT (T'[0...m —1]);
QUICK—SORT (T'[m +1...n —1]);

Wiele wlasnosci sortowania szybkiego zalezy od zastosowanej procedury dzielacej. Stabilnosé
tego algorytmu zalezy od stabilnosci podziatu. Czas potrzebny na wykonanie sortowania przez
podzial takze zalezy od czasu dzielenia; gdy zalozymy, ze dzielenie dziala w czasie O(n) to czas
dzialania sortowania wyraza sie nastepujaca zaleznoscig rekurencyjna:

TO)=T(1) = 0O(1)
{ = T(m)+Tn—m-1)4+0(n) dla n>1lime{0,...,n—1}

=
2
|

Tak wiec czas dzialania sortowania szybkiego wynosi w najgorszym przypadku O(n?), ale w
przypadku srednim (kazdy mozliwy podzial jest jednakowo prawdopodobny) wynosi O(n logn).

10

