
ćwiczenia (licencjat wieczorowy): lista zadań nr 2 16 października 2006 r.

algorytmy i struktury danych
sortowanie

Instytut Informatyki Uniwersytetu Wrocawskiego Paweł Rzechonek

1. [∗] Czasami zdarza się sytuacja, gdy wielokrotnie powtarzają się dane o takim samym
kluczu. Jak należy zmodyfikować procedurę binary–search, aby zwracała ona numer
pierwszej pozycji, na której wartość x występuje w tablicy T [0 . . . n− 1]? A jak wyznaczyć
ostatnią pozycję? Modyfikacje te nie powinny wpływać na złożoność algorytmu.

2. [∗∗] Przedstaw algorytm i jego implementację w pseudokodzie, który pozwoli zrealizować w
miejscu dowolną zadaną permutację P [0 . . . n−1] elementów tablicy T [0 . . . n−1]. Algorytm
ma działać w liniowym czasie. Postaraj się, aby wykonywał on co najwyżej 3

2n przepisań
elementów.

3. [∗] Wykaż, że algorytm sortowania bąbelkowego ciągu n-elementowego wykona liniową
liczbę zamian elementów (chociaż liczba porównań zawsze będzie kwadratowa) w przy-
padku, gdy liczba inwersji związanych z każdym elementem jest rzędu O(1).

4. [∗∗] Ile porównań elementów w średnim przypadku wykona algorytm sortowania przez
wstawianie?

5. [∗∗] Dana jest prostokątna tablica elementów, które możemy porównywać relacją ≤. W
tablicy tej najpierw sortujemy wszystkie wiersze, a potem wszystkie kolumny. Wykaż, że
po posortowaniu kolumn wiersze nadal pozostaną posortowane.

6. [∗] Pokaż, jak zaimplementować algorytm scalania dwóch ciągów n-elementowych, który
będzie korzystał z pomocniczego bufora tylko o długości n. Wynik scalania należy umie-
ścić w tablicach wejściowych. Jak duży bufor będzie potrzebny w twoim algorytmie w
przypadku, gdy scalane ciągi będą różnych długości?

7. [∗∗∗] Na wykładzie został przedstawiony uproszczony algorytm Kronroda scalania w miej-
scu dwóch posortowanych ciągów z liczbami zapisanych w jednej tablicy. Posortowane ciągi
o długościach odpowiednio p i n − p, gdzie 0 < p < n, są umieszczone w n-elementowej
tablicy T [0 . . . n− 1], w taki sposób że T0 ≤ T1 ≤ . . . ≤ Tp−1 oraz Tp ≤ Tp+1 ≤ . . . ≤ Tn−1.
W wersji uproszczonej zakładaliśmy, że

√
n ∈ N oraz

√
n | p Uogólnij ten algorytm na

przypadek dowolnych wielkości n i p, aby nie pogorszyć liniowej złożoności algorytmu.

1


