
ćwiczenia (licencjat dzienny): lista zadań nr 11 1 stycznia 2007 r.

algorytmy i struktury danych
metoda „dziel i zwyciężaj”

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

1. [∗] Rozważmy pewną modyfikację sortowania głupiego, która polega na przepychaniu na
koniec (połączonym z sortowaniem) 1

4n największych elementów (operację tą powtarzamy
trzykrotnie):

procedure stooge-sort-4 (key T [0 . . . n−1])
{

if n = 2 then { compare-exchange (T [0], T [1]) ; return; }
p1 ← 1/4 n ; p2 ← 2/4 n ; p3 ← 3/4 n ;
/* pierwszy etap przepychania z sortowaniem */
stooge-sort-4 (t[0 . . . p2−1]) ;
stooge-sort-4 (t[p1 . . . p3−1]) ;
stooge-sort-4 (t[p2 . . . n−1]) ;
/* drugi etap przepychania z sortowaniem */
stooge-sort-4 (t[0 . . . p2−1]) ;
stooge-sort-4 (t[p1 . . . p3−1]) ;
/* trzeci etap przepychania z sortowaniem */
stooge-sort-4 (t[0 . . . p2−1]) ;

}
Uzasadnij poprawność tego algorytmu i oszacuj jego złożoność korzystając z uniwersalnego
twierdzenia o rekurencji.

2. [∗∗] Dane są dwie posortowane n-elementowe tablice liczb oraz liczba całkowita k z zakresu
1 ≤ k ≤ 2n. Opisz algorytm znajdowania k-tej co do wielkości liczby spośród liczb zapi-
sanych w obu tablicach. Czas działania twojego algorytmu powinien być rzędu O(log n).
Uzasadnij jego poprawność.

3. [∗∗∗] Niech dane będą dwie długie liczby w systemie d-arnym: jedna o długości m i druga
o długości n. Załóżmy, że m ≤ n. Gdy m ' n, to algorytm pisemny oblicza iloczyn
takich liczb w czasie O(n2), a algorytm z wykładu oparty na technice „dziel i zwyciężaj”
potrzebuje tylko O(nlog 3) czasu. Ale gdy m jest znacznie mniejsze niż n, to również ten
ostatni algorytm jest nie do zaakceptowania. Skonstruuj algorytm, który dla przypadku
gdy m¿ n będzie działał w czasie O(nmlog 3

2 ).

1



4. [∗∗∗] Zmodyfikuj algorytm mnożenia długich liczb metodą „dziel i zwyciężaj” w ten
sposób, aby liczba była dzielona na trzy części zamiast na dwie. Ile mnożeń krótszych liczb
musisz wtedy wykonać? Jaka jest złożoność czasowa twojego algorytmu?
Uwaga! Wynik dla podziału na trzy części powinien być lepszy niż dla podziału na dwie
części.

5. [∗] Wyznacz wartość progową (threshold value) opłacalności stosowania algorytmu Stras-
sena w stosunku do tradycyjnego algorytmu mnożenia macierzy.

6. [∗∗] Jak zmodyfikować algorytm Strassena bez pogarszania jego asymptotycznej złożono-
ści O(nlog 7) , aby mnożył macierze kwadratowe n×n metodą „dziel i zwyciężaj”, w których
n nie jest potęgą 2 ? Jak uogólnić metodę Strassena, aby można nią było mnożyć macierze
o rozmiarach a× b i b× c dla dowolnych a, b, c ∈ N i jaka jest wtedy złożoność tego algo-
rytmu?
Uwaga! W pierwszej części zadania nie chodzi o to, by dopisać tyle zer aby rozmiar ma-
cierzy powiększył się do liczby będącej potęgą 2.
Wskazówka! W drugiej części zadania rozważ najpierw przypadek, gdy a, b i c są potę-
gami 2. Zastanów się także, co należy zrobić w sytuacji, gdy a, b lub c ma wartość 1.

7. [∗] Niech A będzie macierzą o wymiarach k n×n a B macierzą o wymiarach n×k n, gdzie
k ∈ N. Jak szybko można obliczyć iloczyn A ·B korzystając z algorytmu Strassena? O ile
lepszy jest ten wynik od tradycyjnego mnożenia macierzy? Odpowiedz na te same pytania
dla iloczynu B ·A.

8. [∗∗∗] Niech A będzie kwadratową macierzą trójkątną (górną lub dolną) o rozmiarach
n × n, gdzie n jest potęgą 2. Podzielmy macierz A na cztery podmacierze o wymiarach
n
2 × n

2 : [
A11 A12

A21 A22

]

Zakładamy, że A−1
11 istnieje. Niech ∆ = A22 − A21A

−1
11 A12. Zakładamy, że ∆−1 istnieje.

Udowodnij, że można wówczas obliczyć macierz odwrotną A−1 w następujący sposób:

A−1 =
[

A−1
11 + A−1

11 A12∆−1A21A
−1
11 −A−1

11 A12∆−1

−∆−1A21A
−1
11 ∆−1

]

Jaka jest złożoność czasowa algorytmu obliczającego macierz odwrotną A−1 opisaną po-
wyżej metodą?

9. [∗∗] Oszacuj złożoność czasową przedstawionego na wykładzie algorytmu znajdowania
pary najbliżej położonych punktów na płaszczyźnie. W przedstawionym rozwiązaniu, po
obliczeniu rozwiązań dla podproblemów i oznaczeniu punktów należących do tzw. strefy nie-
pewności (strefa z kandydatami do poprawienia wyniku) sortowane były wszystkie punkty
położone w tej strefie względem współrzędnej Y , a potem badane odległości każdego z tych
punktów z siedmioma następnymi. Jak poprawić ten algorytm, aby obliczał tylko dwie
odległości związane z każdym punktem w strefie niepewności zamiast siedmiu?

2


