
ćwiczenia (licencjat wieczorowy): lista zadań nr 13 15 stycznia 2008 r.

algorytmy i struktury danych
metoda „dziel i zwyciężaj”

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

1. [∗] Rozważmy pewną modyfikację sortowania głupiego, która polega na przepychaniu na koniec (połą-
czonym z sortowaniem) 1

4n największych elementów (operację tą powtarzamy trzykrotnie):

procedure stooge–sort–4 (key T [0 . . . n−1])
{

if n < 8 then { bubble–sort (T ) ; return; }
p1 ← dn

4 e ; p2 ← 2dn
4 e ; p3 ← 3dn

4 e ;
/* pierwszy etap przepychania z sortowaniem */
stooge–sort-4 (t[0 . . . p2−1]) ;
stooge–sort–4 (t[p1 . . . p3−1]) ;
stooge–sort–4 (t[p2 . . . n−1]) ;
/* drugi etap przepychania z sortowaniem */
stooge–sort–4 (t[0 . . . p2−1]) ;
stooge–sort–4 (t[p1 . . . p3−1]) ;
/* trzeci etap przepychania z sortowaniem */
stooge–sort–4 (t[0 . . . p2−1]) ;

}
Uzasadnij poprawność tego algorytmu i oszacuj jego złożoność korzystając z uniwersalnego twierdzenia
o rekurencji.

2. [∗∗] Dane są dwie posortowane n-elementowe tablice liczb oraz liczba całkowita k z zakresu 1 ≤ k ≤ 2n.
Opisz algorytm znajdowania k-tej co do wielkości liczby spośród liczb zapisanych w obu tablicach. Czas
działania twojego algorytmu powinien być rzędu O(log n). Uzasadnij jego poprawność.

3. [∗∗] Jak uogólnić algorytm mnożenia długich liczb metodą „dziel i zwyciężaj”, aby długości liczb nie
musiały być potęgami 2, a także by ich długości mogły być różne.

Uwaga. W zadaniu nie chodzi o to, by dopisać tyle zer, aby długości liczb powiększyły się do potęg 2.

4. [∗∗] Niech dane będą dwie długie liczby w systemie d-arnym: jedna o długości m i druga o długości n.
Załóżmy, że m ≤ n. Gdy m ' n, to algorytm pisemny oblicza iloczyn takich liczb w czasie O(n2),
a algorytm z wykładu oparty na technice „dziel i zwyciężaj” potrzebuje tylko O(nlog 3) czasu. Ale gdy
m jest znacznie mniejsze niż n, to również ten ostatni algorytm jest nie do zaakceptowania. Skonstruuj
algorytm, który dla przypadku gdy m¿ n będzie działał w czasie O(nmlog 3

2 ).

5. [∗∗∗] Zmodyfikuj algorytm mnożenia długich liczb metodą „dziel i zwyciężaj” w ten sposób, aby liczba
była dzielona na trzy części zamiast na dwie. Ile mnożeń krótszych liczb musisz wtedy wykonać? Jaka
jest złożoność czasowa twojego algorytmu?

Uwaga. Asymptotyczny czas działania algorytmu z podziałem na trzy części powinien być lepszy niż
z podziałem na dwie części.

6. [∗∗] Niech A będzie macierzą o wymiarach k n × n a B macierzą o wymiarach n × k n, gdzie k ∈ N.
Jak szybko można obliczyć iloczyn A ·B korzystając z algorytmu Strassena? O ile lepszy jest ten wynik
od tradycyjnego mnożenia macierzy? Odpowiedz na te same pytania dla iloczynu B ·A.

7. [∗∗] Wyznacz wartość progową (threshold) opłacalności stosowania algorytmu Strassena w stosunku do
tradycyjnego algorytmu mnożenia macierzy. Za operacje dominujące przyjmij działania arytmetyczne
na elementach macierzy (dodawanie, odejmowanie i mnożenie).

1


