
wykład nr 1 (licencjat dzienny/wieczorowy) 11/12 października 2007 r.

algorytmy i struktury danych
sortowanie

Instytut Informatyki Uniwersytetu Wrocawskiego Paweł Rzechonek

1 Podstawowe pojęcia

Zadania porządkowe (ang. ordering problems) to klasa problemów, w których zbiór danych należy w
pewien sposób uporządkować lub coś w tym zbiorze wyszukać. Do problemów porządkowych zalicza się przede
wszystkim sortowanie, znajdowanie elementu minimalnego badź maksymalnego i wybór mediany.

Elementy zbioru danych pochodzą z określonego uniwersum z porządkiem liniowym i relacją ≤, aby każdą
parę elementów można było ze sobą porównać. Zdarza się, że pojedynczy element jest całym rekodrm różnych
informacji. Wtedy wyróżnia się jedno pole zwane kluczem (ang. key), na którym jest określona relacja ≤ i
które jest reprezentantem rekordu w operacjach porównywania.

Elementy w zbiorze danych są ponumerowane kolejnymi liczbami naturalnymi. Liczby te są pozycjami
(ang. position) elementów w zbiorze. Jest więc dość naturalne przechowywanie takich danych w tablicy; ale
rozważa się też przypadki, gdy dane są zapisane w pliku badź są pamiętane w liście.

W problemach porządkowych nie zakłada się uporządkowania zbioru danych — przeważnie są to zbiory
nieuporządkowane, albo częściowo uporządkowane. Spójrzmy na n–elementowy zbiór danych jako na ciąg
elementów A = (a0, . . . , an−1). Miarą nieuporządkowania w takim ciągu jest liczba występujących w nim
inwersji (ang. inversion), czyli takich par (i, j), że 0 ≤ i < j < n oraz ai > aj :

|{(i, j) | 0 ≤ i < j < n ∧ ai > aj}|

O ciągu powiemy, że jest uporządkowany (ang. ordered), gdy jest niemalejący (nie ma w nim żadnej inwersji):

∀ 0 < i < n : ai−1 ≤ ai

Spostrzeżenie 1 Maksymalna liczba inwersji w ciągu n–elementowym wynosi n(n−1)
2 .

Wskazówka do dowodu
Maksymalna liczba inwersji występuje w ciągu odwrotnie uporządkowanym. Dowód nie wprost. ¥

Mówimy, że algorytm porządkujący działa w miejscu (ang. in–place), jeśli podczas działania algorytm
zużywa tylko stałą liczbę dodatkowych komórek pamięci. W skład dodatkowych komórek pamięci nie wliczamy
danych.

Mówimy, że algorytm porządkujący jest stabilny (ang. stable), jeśli po zakończeniu działania algorytm za-
chowuje względne ustawienia elementów o równych kluczach. Algorytm taki może zmieniać pozycje elementów
w zbiorze z danymi, ale elementy o takich samych wartościach zachowują początkowe ustawienia względem
siebie.

O algorytmach porządkujących będziemy zakładali, że możemy mieć bezpośredni dostęp (ang. random
access) do każdego elementu, że elementy mogą być jedynie porównywane (ang. compare), przenoszone
(ang. move) bądź zamieniane (ang. exchange) miejscami. Zauważmy, że jedna zamiana miejscami dwóch
elementów wymaga trzech przesunięć.

2 Problem sortowania

Sortowanie (ang. sorting) to problem bardzo często rozwiązywany na komputerze. Wiąże się to z faktem,
że dużo szybciej można znajdować informacje w zbiorach uporządkowanych niż w nieuporządkowanych.

Problem sortowania tablic można zdefiniować następująco.

1

Dane: W n–elementowej tablicy A[0 . . . n− 1] zapisany jest nieuporządkowany ciąg wartości a0, a1, . . . , an−1,
pochodzących z określonego uniwersum z porządkiem liniowym i relacją porządkująca ≤.

Zadanie: Dane w tej tablicy należy tak poprzestawiać, aby aσ0 ≤ aσ1 ≤ . . . ≤ aσn−1 , gdzie σ jest permutacją
zbioru n–elementowego.

Ograniczenia: Porządkując dane możemy jedynie porównywać elementy i przepisywać je bądź zamieniać
miejscami.

2.1 Wyszukiwanie

Najczęściej wykonywaną operacją na zbiorach z danymi jest wyszukiwanie (ang. searching) informacji
względem zadanego klucza. Problem ten można zdefiniować następująco.

Dane: Zadany jest klucz x oraz n–elementowa tablica A[0 . . . n− 1] z elementami a0, a1, . . . , an−1.

Zadanie: Należy znaleźć pozycję w tablicy, na której znajduje się element o wartości x.

Ograniczenia: Można jedynie porównywać klucz z elementami w tablicy.

Najprostszym rozwiązaniem tego zadania jest przeglądnięcie tablicy od początku do końca i porównywanie
jej elementów z kluczem, czyli wyszukiwanie sekwencyjne (ang. sequence searching).

function seq–search (keytype A[0 . . . n− 1], key x) 7→ int
{

for i = 0 . . . n− 1 do
if A[i].key = x then return i ;

return null;
}

Działanie procedury seq–search wymaga wykonania 1 porównania w najlepszym przypadku, n porównań
w najgorszym przypadku, oraz∼ n

2 porównań w przypadku średnim gdy szukany element znajduje się w tablicy.
Dużo szybszy algorytm można skonstruować, gdy dane w tablicy pochodzą z pewnego uniwersum z po-

rządkiem liniowym i są uporządkowane. Oto zmienione założenie dotyczące postaci danych.

Dane: Zadany jest klucz x oraz n-elementowa tablica A[0 . . . n− 1] z elementami a0, a1, . . . , an−1 uporządko-
wanymi w kolejności niemalejącej a0 ≤ a1 ≤ . . . ≤ an−1.

Korzystając z informacji o uporządkowaniu danych można zastosować algorytm wyszukiwania binarnego
(ang. binary searching).

function bin–search (ordtype A[0 . . . n− 1], ord x) 7→ int
{

int a← 0 ; // początek obszaru poszukiwań
int b← n ; // koniec obszaru poszukiwań
int m← ba+b

2 c ; // środek obszaru poszukiwań
while a < b do
{

compare A[m].key ?x
case < then a← m + 1 ;
case > then b← m ;
case = then return m ;

m← ba+b
2 c ;

}
return null;

}

Procedura bin–search wykona nie więcej niż b1 + log nc porównań w najgorszym przypadku.

2

3 Elementarne metody sortowania

3.1 Sortowanie bąbelkowe

Algorytm sortowania bąbelkowego (ang. bubble–sort) jest najprostszym i najpopularniejszym algoryt-
mem sortowania. Idea sortowania bąbelkowego polega na przesuwaniu coraz to większych elementów na koniec
tablicy. Po dojściu do elementu maksymalnego podczas przeglądania tablicy, będzie on dalej przepychany
o jedną pozycję aż do końca. W każdej fazie rozmiar problemu redukuje się więc o 1, bo element maksymalny
znajdzie się na właściwej, ostatniej pozycji w tablicy.

procedure bubble–sort (ordtype A[0 . . . n− 1])
{

for q = n− 1 . . . 1 do
for i = 1 . . . q do

if Ai−1 > Ai then Ai−1 ←→ Ai ;
}

Sortowanie bąbelkowe jest stabilne i działa w miejscu. W algorytmie tym wykonujemy n(n−1)
2 porów-

nań w każdym przypadku i co najwyżej n(n−1)
2 zamian elementów. Jako operację dominującą przyjmujemy

porównania. Czas działania algorytmu wynosi więc w każdym przypadku n(n−1)
2 ∈ Θ(n2).

3.2 Sortowanie przez zamianę

Idea algorytmu sortowania przez zamianę (ang. exchange–sort) polega na przenoszeniu coraz to mniej-
szych elementów na początek tablicy. Po dojściu do elementu minimalnego podczas przeglądania tablicy,
zostanie on umieszczony na pierwszej pozycji, a w każdym następnym kroku będzie on tylko porównywany
z następnymi elementami. W każdej fazie rozmiar problemu redukuje się więc o 1, bo element minimalny
znajdzie się na właściwej, pierwszej pozycji w tablicy.

procedure exchange–sort (ordtype A[0 . . . n− 1])
{

for p = 0 . . . n− 2 do
for i = p + 1 . . . n− 1 do

if Ap > Ai then Ap ←→ Ai ;
}

Sortowanie przez zamianę nie jest stabilne ale działa w miejscu. W algorytmie tym wykonujemy n(n−1)
2 po-

równań w każdym przypadku i co najwyżej n(n−1)
2 zamian elementów. Jako operację dominującą przyjmujemy

porównania. Czas działania algorytmu wynosi więc w każdym przypadku n(n−1)
2 ∈ Θ(n2).

3.3 Sortowanie przez wstawianie

Idea algorytmu sortowania przez wstawianie (ang. insertion–sort) polega na wstawianiu kolejnych
elementów do uporządkowanego początkowego fragmentu tablicy. W ten sposób w każdej fazie zwiększamy
długość posortowanej części tablicy o 1.

procedure insertion–sort (ordtype A[0 . . . n− 1])
{

for q = 1 . . . n− 1 do
for i = q . . . 1 do

if Ai−1 > Ai

then Ai−1 ←→ Ai ;
else break;

}

3

Sortowanie przez wstawianie jest stabilne i działa w miejscu. W algorytmie tym wykonujemy n(n−1)
2

porównań w najgorszym przypadku oraz ∼ n2

4 w przypadku średnim. Jako operację dominującą przyjmujemy
porównania. Czas działania algorytmu jest więc rzędu Θ(n2) w przypadku pesymistycznym i średnim.

3.4 Sortowanie przez wybieranie

Algorytm sortowania przez wybieranie (ang. selection–sort) jest udoskonaloną wersją sortowania przez
zamianę. Idea sortowania przez wybieranie polega na wyznaczeniu pozycji elementu minimalnego a następnie
umieszczeniu go na początku tablicy za pomocą jednej zamiany. W każdej fazie rozmiar problemu redukuje
się więc o 1, bo element minimalny znajdzie się na właściwej, pierwszej pozycji w tablicy.

procedure selection–sort (ordtype A[0 . . . n− 1])
{

for p = 0 . . . n− 2 do
{

m← p ; // pozycja elementu minimalnego
for i = p + 1 . . . n− 1 do

if Am > Ai then m← i ;
if p < m then Ap ←→ Am ;

}
}

Sortowanie przez wybieranie nie jest stabilne ale działa w miejscu. W algorytmie sortowania przez wybie-
ranie wykonujemy n(n−1)

2 porównań w każdym przypadku, ale tylko co najwyżej n−1 zamian elementów. Jako
operację dominującą przyjmujemy porównania. Czas działania algorytmu wynosi więc w każdym przypadku
n(n−1)

2 ∈ Θ(n2). Algorytm ten można wykorzystać do sortowania małych danych, w sytuacji gdy zamiana
elementów miejscami jest operacją trudną i kosztowną.

4 Sortowanie Shella

Sortowanie Shella (D. L. Shell, 1959) jest prostym rozszerzeniem sortowania przez wstawianie, które
przyspiesza proces sortowania dzięki przestawianiu odległych a nie tylko sąsiadujących ze sobą elementów.

Definicja 2 d–pociąg ciągu A = (a0, a1, a2, . . .) to podciąg złożony z elementów oddalonych od siebie o wielo-
krotność liczby d.

Obserwacja 3 Dla ustalonej wartości naturalnej d, ciąg n–elementowy zawiera co najwyżej d różnych d–
podciągów: gdy d > n to ciąg zawiera tylko n podciągów jednoelementowych, w przeciwnym przypadku jest ich
dokładnie d.

Definicja 4 Ciąg A = (a0, a1, a2, . . .) jest d-posortowany, gdy wszystkie jego d–podciągi są posortowane.

Twierdzenie 5 Przeprowadzenie p–sortowania w ciągu q-posortowanym nie zniszczy p–posortowania.

procedure shell–sort (ordtype A[0 . . . n− 1])
{

D ← (d0, d1, d2, . . .) ; // ciąg przyrostów
for k = max{i | di < n} . . . 0 do
{

d← dk ;
for m = 0 . . . d− 1 do

〈posortuj metodą insertion–sort d-podciąg rozpoczynający się od A[m]〉 ;
k −− ;

}
}

4

Twierdzenie to jest podstawą sortowania Shella. Otwartym problemem pozostaje odpowiedni dobór przy-
rostów, czyli ciągu wartości D = (d0, d1, d2, . . .), według którego należy przeprowadzać kolejne sortowania,
przy czym d0 = 1 jest ostatnim przyrostem w sortowaniu.

Twierdzenie 6 Sortowanie n–elementowego ciągu metodą Shella, w którym zastosuje się dwuelementowy ciąg
przyrostów D = (1, b 3

√
nc) będzie działać w czasie O(n5/3).

Stosując sortowanie Shella z tylko dwoma skokami można istotnie przyspieszyć proces sortowania w sto-
sunku do sortowania przez proste wstawianie.

Jeszcze lepsze wyniki można uzyskać wprowadzając większą ilość skoków. Bardzo dobrze zachowuje się
sekwencja skoków 1, 3, 7, 15, 31. . . (T. N. Hibbard, 1963), którą moźna zapisać następującym wzorem:

hi = 2i+1 − 1 dla i ≥ 0

Twierdzenie 7 Sortowanie n–elementowego ciągu metodą Shella, w którym zasosuje się ciąg przyrostów Hib-
barda (1, 3, 7, 15, 31. . .) będzie działać w czasie O(n3/2).

Inny dobry ciąg to sekwencja skoków 1, 4, 13, 40, 121. . . (D. E. Knuth, 1969), którą można zdefiniować
rekurencyjnie:

h0 = 1
hi = 3 hi−1 + 1 dla i ≥ 1

Twierdzenie 8 Sortowanie n–elementowego ciągu metodą Shella, w którym zasosuje się ciąg przyrostów Knu-
tha (1, 4, 13, 40, 121. . .) będzie działać w czasie O(n3/2).

Działanie algorytmu Shella można poprawić stosując sekwencję skoków 1, 5, 19, 41, 109. . . (R. Sedgewick,
1986), która wyraża się wzorem:

hi =
{

9 · 2i − 9 · 2i/2 + 1 dla parzystych i
8 · 2i − 6 · 2(i+1)/2 + 1 dla nieparzystych i

Twierdzenie 9 Sortowanie n–elementowego ciągu metodą Shella, w którym zasosuje się ciąg przyrostów Sed-
gewicka (1, 5, 19, 41, 109. . .) będzie działać w czasie O(n4/3).

Dużo lepszy wynik można uzyskać, gdy wykorzysta się fakt, że sortowanie przez wstawianie zastosowane
do ciągu 2-uporządkowanego i 3-uporządkowanego będzie działało w liniowym czasie.

Fakt 10 Jeśli zastosujemy metodę sortowania przez proste wstawianie do ciągu, który jest jednocześnie 2-
posortowany i 3-posortowany, to każdy element przesunie się co najwyżej o jedną pozycję.

Jeśli ciąg jest 4- i 6-uporządkowany, to 2-sortowanie wykona się na tym ciągu w liniowym czasie; a jeśli ciąg
jest 6- i 9-uporządkowany, to również w liniowym czasie wykona się na tym ciągu 3-sortowanie. Kontynuując
to rozumowanie można skonstruować następującą sekwencję przyrostów (V. R. Pratt, 1971): 1, 2, 3, 4, 6, 9, 8,
12, 18, 27. . .

1
2 3

4 6 9
8 12 18 27

16 24 36 54 81

Wartości ciągu przyrostów Pratta można odczytać z powyższego trójkąta, a ogólna postać każdego wyrazu to:

h(i2+i)/2+j = 2i−j · 3j dla i = 0, 1 . . . oraz j = 0 . . . i

Twierdzenie 11 Sortowanie n-elementowego ciągu metodą Shella, w którym zasosuje się ciąg przyrostów
Pratta (1, 2, 3, 4, 6, 9, 8, 12, 18, 27. . .) będzie działać w czasie O(n log2 n).

5

