wyklad nr 1 (licencjat dzienny/wieczorowy) 11/12 paZdziernika 2007 r.

ALGORYTMY I STRUKTURY DANYCH

SORTOWANIE

Instytut Informatyki Uniwersytetu Wrocawskiego Pawel Rzechonek

1 Podstawowe pojecia

Zadania porzadkowe (ang. ordering problems) to klasa probleméw, w ktérych zbiér danych nalezy w
pewien sposob uporzadkowac lub co$§ w tym zbiorze wyszukaé. Do probleméw porzadkowych zalicza sie przede
wszystkim sortowanie, znajdowanie elementu minimalnego badZz maksymalnego i wybér mediany.

Elementy zbioru danych pochodza z okreslonego uniwersum z porzadkiem liniowym i relacja <, aby kazda
pare elementéw mozna bylo ze soba porownaé. Zdarza sie, ze pojedynczy element jest calym rekodrm réznych
informacji. Wtedy wyrdznia sie jedno pole zwane kluczem (ang. key), na ktérym jest okreslona relacja < i
ktére jest reprezentantem rekordu w operacjach poréwnywania.

Elementy w zbiorze danych sa ponumerowane kolejnymi liczbami naturalnymi. Liczby te sa pozycjamsi
(ang. position) elementéw w zbiorze. Jest wiec dosé naturalne przechowywanie takich danych w tablicy; ale
rozwaza sie tez przypadki, gdy dane sa zapisane w pliku badz sa pamietane w lidcie.

W problemach porzadkowych nie zaktada sie uporzadkowania zbioru danych — przewaznie sa to zbiory
nieuporzadkowane, albo cze$ciowo uporzadkowane. Spédjrzmy na n—elementowy zbiér danych jako na ciag
elementéw A = (ag,...,a,—1). Miara nieuporzadkowania w takim ciagu jest liczba wystepujacych w nim
tnwersji (ang. inversion), czyli takich par (4,), ze 0 <1 < j < n oraz a; > a;:

() 10 i<j<nAa>a)
O ciagu powiemy, ze jest uporzqgdkowany (ang. ordered), gdy jest niemalejacy (nie ma w nim zadnej inwersji):

Vo<i<n:a_1<a;

. n(n—1)
Spostrzezenie 1 Maksymalna liczba inwersji w ciggu n—elementowym wynosi ——5—.
Wskazéwka do dowodu
Maksymalna liczba inwersji wystepuje w ciagu odwrotnie uporzadkowanym. Dowdd nie wprost. |

Moéwimy, ze algorytm porzadkujacy dziala w miejscu (ang. in—place), jesli podczas dzialania algorytm
zuzywa tylko stala liczbe dodatkowych komoérek pamieci. W sktad dodatkowych komoérek pamieci nie wliczamy
danych.

Méwimy, ze algorytm porzadkujacy jest stabilny (ang. stable), jedli po zakonczeniu dzialania algorytm za-
chowuje wzgledne ustawienia elementéw o réwnych kluczach. Algorytm taki moze zmieniaé pozycje elementéw
w zbiorze z danymi, ale elementy o takich samych wartosciach zachowuja poczatkowe ustawienia wzgledem
siebie.

O algorytmach porzadkujacych bedziemy zakladali, ze mozemy mieé¢ bezposredni dostep (ang. random
access) do kazdego elementu, ze elementy moga byé jedynie poréwnywane (ang. compare), przenoszone
(ang. move) badz zamieniane (ang. exchange) miejscami. Zauwazmy, ze jedna zamiana miejscami dwdch
elementéw wymaga trzech przesuniec.

2 Problem sortowania

Sortowanie (ang. sorting) to problem bardzo czesto rozwiazywany na komputerze. Wiaze sig to z faktem,
ze duzo szybciej mozna znajdowaé informacje w zbiorach uporzadkowanych niz w nieuporzadkowanych.
Problem sortowania tablic mozna zdefiniowaé¢ nastepujaco.

Dane: W n—elementowej tablicy A[0...n — 1] zapisany jest nieuporzadkowany ciag wartosci ag, a1, ..., an_1,
pochodzacych z okreslonego uniwersum z porzadkiem liniowym i relacja porzadkujaca <.

Zadanie: Dane w tej tablicy nalezy tak poprzestawiaé, aby a,, < ap, < ... < a,, ,, gdzie o jest permutacja
zbioru n—elementowego.

Ograniczenia: Porzadkujac dane mozemy jedynie poréwnywaé elementy i przepisywaé je badz zamieniaé
miejscami.
2.1 Wyszukiwanie

Najczesciej wykonywana operacja na zbiorach z danymi jest wyszukiwanie (ang. searching) informacji
wzgledem zadanego klucza. Problem ten mozna zdefiniowaé nastepujaco.

Dane: Zadany jest klucz x oraz n—elementowa tablica A[0...n — 1] z elementami ag,a, ..., ap_1.
Zadanie: Nalezy znalezé pozycje w tablicy, na ktérej znajduje sie element o wartosci x.
Ograniczenia: Mozna jedynie poréwnywaé klucz z elementami w tablicy.

Najprostszym rozwiazaniem tego zadania jest przegladniecie tablicy od poczatku do konca i poréwnywanie
jej elementéw z kluczem, czyli wyszukiwanie sekwencyjne (ang. sequence searching).

function SEQ-SEARCH (keytype A[0...n — 1], key x) — int
{
fori=0...n—1do
if A[i].key = = then return i;
return null;

Dzialanie procedury SEQ-SEARCH wymaga wykonania 1 poréwnania w najlepszym przypadku, n poréwnan
w najgorszym przypadku, oraz ~ 3 poréwnan w przypadku srednim gdy szukany element znajduje si¢ w tablicy.

Duzo szybszy algorytm mozna skonstruowaé, gdy dane w tablicy pochodza z pewnego uniwersum z po-
rzadkiem liniowym i sa uporzadkowane. Oto zmienione zalozenie dotyczace postaci danych.

Dane: Zadany jest klucz x oraz n-elementowa tablica A[0...n — 1] z elementami ag, a1, . .., a,—1 uporzadko-
wanymi w kolejnosci niemalejacej ag < a3 < ... < ap_1.

Korzystajac z informacji o uporzadkowaniu danych mozna zastosowaé algorytm wyszukiwania binarnego
(ang. binary searching).

function BIN—SEARCH (ordtype A[0...n — 1], ord x) — int
{
int a «— 0; // poczgtek obszaru poszukiwan
int b — n; // koniec obszaru poszukiwar
int m — |22 |; // $rodek obszaru poszukiwar
while a < b do
{
compare A[m].key?z
case < thena —m+1;
case > then b «— m;
case = then return m;
m— |52
}

return null;

Procedura BIN-SEARCH wykona nie wiecej niz |1 4 logn| poréwnan w najgorszym przypadku.

3 Elementarne metody sortowania

3.1 Sortowanie babelkowe

Algorytm sortowania bgbelkowego (ang. bubble—sort) jest najprostszym i najpopularniejszym algoryt-
mem sortowania. Idea sortowania babelkowego polega na przesuwaniu coraz to wiekszych elementéw na koniec
tablicy. Po dojsciu do elementu maksymalnego podczas przegladania tablicy, bedzie on dalej przepychany
o jedna pozycje az do konca. W kazdej fazie rozmiar problemu redukuje si¢ wiec o 1, bo element maksymalny
znajdzie si¢ na wladciwej, ostatniej pozycji w tablicy.

procedure BUBBLE—SORT (ordtype A[0...n — 1])
{
forg=n—-1...1do
fori=1...qdo
if A;,_1 > A; then A;_; «—— A7,

Sortowanie babelkowe jest stabilne i dziala w miejscu. W algorytmie tym wykonujemy 2L poréw-

2
n(n—1)
2

nan w kazdym przypadku i co najwyzej zamian elementéw. Jako operacje dominujaca przyjmujemy

. -1
poréwnania. Czas dzialania algorytmu wynosi wiec w kazdym przypadku % € 0(n?).

3.2 Sortowanie przez zamiane

Idea algorytmu sortowania przez zamiane (ang. exchange—sort) polega na przenoszeniu coraz to mniej-
szych elementéw na poczatek tablicy. Po doj$ciu do elementu minimalnego podczas przegladania tablicy,
zostanie on umieszczony na pierwszej pozycji, a w kazdym nastepnym kroku bedzie on tylko poréwnywany
z nastepnymi elementami. W kazdej fazie rozmiar problemu redukuje sie¢ wiec o 1, bo element minimalny
znajdzie si¢ na wlasciwej, pierwszej pozycji w tablicy.

procedure EXCHANGE-SORT (ordtype A[0...n —1])
{
forp=0...n—2do
fori=p+1...n—1do
if Ap > Az then Ap — AL,

. . o . . . o . . . —1
Sortowanie przez zamiane nie jest stabilne ale dziatla w miejscu. W algorytmie tym wykonujemy % po-

réwnan w kazdym przypadku i co najwyzej "("2_1) zamian elementéw. Jako operacje dominujaca przyjmujemy

p . . . L . —1
poréwnania. Czas dzialania algorytmu wynosi wigc w kazdym przypadku n("Q) € On?).

3.3 Sortowanie przez wstawianie

Idea algorytmu sortowania przez wstawianie (ang. insertion—sort) polega na wstawianiu kolejnych
elementéw do uporzadkowanego poczatkowego fragmentu tablicy. W ten sposéb w kazdej fazie zwigkszamy
dtugosé posortowanej czesci tablicy o 1.

procedure INSERTION—SORT (ordtype A[0...n —1])
{
forg=1...n—1do
fori=¢q...1do
if A,_1 > A;
then Ai,1 — Al ;
else break;

Sortowanie przez wstawianie jest stabilne i dziala w miejscu. W algorytmie tym wykonujemy ———

poréwnan w najgorszym przypadku oraz ~ %2 w przypadku $rednim. Jako operacje dominujaca przyjmujemy
poréwnania. Czas dziatania algorytmu jest wiec rzedu ©(n?) w przypadku pesymistycznym i érednim.

3.4 Sortowanie przez wybieranie

Algorytm sortowania przez wybieranie (ang. selection—sort) jest udoskonalong wersjg sortowania przez
zamiane. Idea sortowania przez wybieranie polega na wyznaczeniu pozycji elementu minimalnego a nastepnie
umieszczeniu go na poczatku tablicy za pomoca jednej zamiany. W kazdej fazie rozmiar problemu redukuje
sie wiec o 1, bo element minimalny znajdzie si¢ na wtasciwej, pierwszej pozycji w tablicy.

procedure SELECTION—SORT (ordtype A[0...n — 1])

{

forp=0...n—2do

m «— p; // pozycja elementu minimalnego
fori=p+1...n—1do

if A, > A; then m « i;
if p<mthen A, «—— Ap,;

Sortowanie przez wybieranie nie jest stabilne ale dziala w miejscu. W algorytmie sortowania przez wybie-
ranie wykonujemy "(n2_1) poréwnan w kazdym przypadku, ale tylko co najwyzej n—1 zamian elementow. Jako
operacje dominujaca przyjmujemy pordéwnania. Czas dziatania algorytmu wynosi wiec w kazdym przypadku
% € ©(n?). Algorytm ten mozna wykorzysta¢ do sortowania matych danych, w sytuacji gdy zamiana
elementéw miejscami jest operacja trudng i kosztowna.

4 Sortowanie Shella

Sortowanie Shella (D.L.Shell, 1959) jest prostym rozszerzeniem sortowania przez wstawianie, ktdre
przyspiesza proces sortowania dzigki przestawianiu odleglych a nie tylko sasiadujacych ze soba elementéw.

Definicja 2 d—pocigg ciggu A = (ag,a1,as,...) to podcigg zloZony z elementéw oddalonych od siebie o wielo-
krotnosé liczby d.

Obserwacja 3 Dla ustalonej warto$ci naturalnej d, cigg n—elementowy zawiera co najwyzej d réoznych d—
podciggow: gdy d > n to cigg zawiera tylko n podciggow jednoelementowych, w przeciwnym przypadku jest ich
dokladnie d.

Definicja 4 Cigg A = (ag,a1,as,...) jest d-posortowany, gdy wszystkie jego d—podciggi sq posortowane.

Twierdzenie 5 Przeprowadzenie p—sortowania w ciggu q-posortowanym nie zniszczy p—posortowania.

procedure SHELL-SORT (ordtype A[0...n —1])

{
D — (do,dy,ds,...); // ciag przyrostéw

for k =max{i|d; <n}...0do

d — dy;
for m=0...d—1do

(posortuj metodg INSERTION—SORT d-podcigg rozpoczynajacy sie od Alm]);
k——;

Twierdzenie to jest podstawg sortowania Shella. Otwartym problemem pozostaje odpowiedni dobér przy-
rostéw, czyli ciagu wartosci D = (do,dy,ds,...), wedlug ktérego nalezy przeprowadzaé kolejne sortowania,
przy czym dg = 1 jest ostatnim przyrostem w sortowaniu.

Twierdzenie 6 Sortowanie n—elementowego ciggu metodg Shella, w ktérym zastosuje sie dwuelementowy cigg
prazyrostow D = (1, | ¢/n]) bedzie dziataé w czasie O(n®/?3).

Stosujac sortowanie Shella z tylko dwoma skokami mozna istotnie przyspieszy¢ proces sortowania w sto-
sunku do sortowania przez proste wstawianie.

Jeszcze lepsze wyniki mozna uzyskaé wprowadzajac wieksza ilo$¢ skokow. Bardzo dobrze zachowuje sie
sekwencja skokéw 1, 3, 7, 15, 31... (T.N. Hibbard, 1963), ktéra mozna zapisaé¢ nastepujacym wzorem:

hi = 2i+1_1 dla ’LZO

Twierdzenie 7 Sortowanie n—elementowego ciggu metodg Shella, w ktorym zasosuje sie cigg przyrostow Hib-
barda (1, 3, 7, 15, 31...) bedzie dzialaé¢ w czasie O(n3/?).

Inny dobry ciag to sekwencja skokéw 1, 4, 13, 40, 121...(D. E. Knuth, 1969), ktéra mozna zdefiniowaé
rekurencyjnie:
hg = 1
hi 3hi—1+1 dla i>1

Twierdzenie 8 Sortowanie n—elementowego ciggu metodg Shella, w ktérym zasosuje sie cigg przyrostow Knu-
tha (1, 4, 13, 40, 121...) bedzie dzialaé w czasie O(n®/?).

Dzialanie algorytmu Shella mozna poprawi¢ stosujac sekwencje skokéw 1, 5, 19, 41, 109. .. (R. Sedgewick,
1986), ktora wyraza si¢ wzorem:

hoo 9 20 —9.20/2 41 dla parzystych i
Y] 8-20—6-20+D/2 11 dla nieparzystych i

Twierdzenie 9 Sortowanie n—elementowego ciggu metodq Shella, w ktérym zasosuje sie cigg przyrostow Sed-
gewicka (1, 5, 19, 41, 109...) bedzie dzialaé w czasie O(n*/3).

Duzo lepszy wynik mozna uzyskaé, gdy wykorzysta sie fakt, ze sortowanie przez wstawianie zastosowane
do ciagu 2-uporzadkowanego i 3-uporzadkowanego bedzie dzialalo w liniowym czasie.

Fakt 10 Jesli zastosujemy metode sortowania przez proste wstawianie do ciggu, ktory jest jednoczesnie 2-
posortowany i 3-posortowany, to kazdy element przesunie sie co najwyzej o jedng pozycje.

Jesdli ciag jest 4- i 6-uporzadkowany, to 2-sortowanie wykona sie na tym ciagu w liniowym czasie; a jesli ciag
jest 6- i 9-uporzadkowany, to rowniez w liniowym czasie wykona sie na tym ciagu 3-sortowanie. Kontynuujac
to rozumowanie mozna skonstruowaé nastepujaca sekwencje przyrostow (V. R. Pratt, 1971): 1, 2, 3, 4, 6, 9, 8,
12, 18, 27...

1
2 3
4 6 9
8 12 18 27
16 24 36 54 81

Wartoéci ciagu przyrostéw Pratta mozna odczytaé z powyzszego tréjkata, a ogbdlna postaé¢ kazdego wyrazu to:
hzgiyjar; = 27737 dlai=0,1...0razj=0...i

Twierdzenie 11 Sortowanie n-elementowego ciggu metodg Shella, w ktérym zasosuje sie cigg przyrostow
Pratta (1, 2, 3, 4, 6, 9, 8, 12, 18, 27...) bedzie dziala¢ w czasie O(n log® n).

