
zadanie nr 4 1/3 kwietnia 2008 r.

kurs programowania w C++
tablica bitów

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie
Zdefiniuj klasę TabBit reprezentującą tablicę bitów. Najprościej implementuje się taką strukturę danych za

pomocą zwykłej tablicy typu int[], przeznaczając na zapamiętanie bitu całe słowo. Jest to rozwiązanie proste,
ale bardzo rozrzutne co do zużywanej pamięci — tablica bitów pamiętana w ten sposób jest kilka/kilanaście
razy obszerniejsza niż potrzeba. A więc takie rozwiązanie nas nie satysfakcjonuje, szczególnie gdy trzeba
posługiwać się w programie wieloma dużymi tablicami (chodzi o tablice zawierające tysiące a nawet miliony
bitów).

Należy zatem tak zaprojektować tablice bitowe, aby przydzielona pamięć była wykorzystywana co do
bitu (modulo rozmiar słowa). W klasie TabBit zdefiniuj operator indeksowania, który umożliwiałby zarówno
czytanie z tablicy, jak również pisanie do niej. Oto fragment kodu, który powinien się skompilować i uruchomić:

TabBit t(72); // tablica 72 bitow
t[0] = 1; // ustawienie bitu 0-ego bitu na 1
t[71] = true; // ustawienie bitu 71-go bitu na 1
bool b = t[0]; // odczytanie bitu 0-ego
t[40] = b; // ustawienie bitu 40-go
t[36] = t[38] = t[71]; // przepisanie bitu 71-go do bitow 38-go i 36-go
cout<<t<<endl; // wysietlenie zawartosci tablicy bitow na ekranie

Ponieważ nie można zaadresować pojedynczego bitu (a tym samym nie można ustamowić referencji do
niego), więc trzeba się posłużyć specjalną techniką umożliwiającą dostęp do pojedynczego bitu w tablicy.
Robi się to poprzez zastosowanie obiektów niewidocznej dla programisty klasy pomocniczej, umiejącej odczytać
i zapisać pojedynczy bit.

class TabBit
{

typedef unsigned long long slowo; // komorka w tablicy
static const int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, TabBit &tb);
friend ostream & operator << (ostream &wy, const TabBit &tb);
class Ref; // klasa pomocnicza dla operatora indeksowania
class Zakres {}; // klasa wyjatku

protected:
int dl; // liczba bitów
slowo *tab; // tablica bitów

public:
explicit TabBit (int rozm);
TabBit (const TabBit &tb);
TabBit & operator = (const TabBit &tb);
~TabBit ();

private:
bool czytaj (int i) const;
bool pisz (int i, bool b);

public:
bool operator[] (int i) const;
Ref operator[] (int i);
inline int rozmiar () const { return dl; }

};

1



Klasa Ref jest klasą pomocniczą, której zadaniem jest zaadresowanie pojedynczego bitu w tablicy —
zastanów się jak powinna ona być zaimplementowana.

Do kompletu podefiniuj operatory koniunkcji, alternatywy, różnicy symetrycznej w połączeniu z przypi-
saniem oraz operator negacji, które będą wykonywać działania na całych tablicach bitów. Nie zapomnij też
o operatorach czytania ze strumienia wejściowego i pisania do strumienia wyjściowego. Wymienione operatory
powinny się przyjaźnić z klasą TabBit.

Uwaga
Całą definicję klasy TabBit podziel na część nagłówkową i źródłową. Następnie w osobnym pliku umieść

program testowy, który sprawdzi poprawność zdefiniowanych przez Ciebie operacji na tablicach bitowych
i operacji na poszczególnych bitach tablicy.

2


