
ćwiczenia (licencjat wieczorowy): lista zadań nr 14 23 czerwca 2009 r.

algorytmy i struktury danych
metoda „dziel i zwyciężaj”, programowanie dynamiczne, strategia zachłanna

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

1. [2 pkt.] Dane są trzy liczby naturalne x, n i p. Skonstruuj rekurencyjny algorytm, który obliczy
xn mod p . Przedstaw implementację twojej metowy w pseudokodzie i oszacuj jej złożoność obliczeniową.

Wskazówka. Rozważ najpierw prostszy przypadek, w którym n jest potęgą liczby 2.

2. [1.5 pkt.] Dane jest regularne drzewo binarne T (drzewo jest regularne, gdy każdy węzeł, który nie
jest liściem ma 2 synów) z korzeniem w węźle r. Opracuj algorytm, który wyznaczy długość najdłuższej
ścieżki w tym drzewie (długość mierzymy liczba krawędzi na ścieżce). Uzasadnij poprawność twojej
metody i oszacuj czas jej działania.

3. [1.5 pkt.] Dane jest regularne drzewo binarne T (drzewo jest regularne, gdy każdy węzeł, który nie jest
liściem ma 2 synów) z korzeniem w węźle r. Opracuj algorytm, który wyznaczy maksymalną wysokość
drzewa pełnego, które można umieścić w zadanym drzewie (korzeń maksymalnego drzewa pełnego nie
musi się znajdować w węźle r). Uzasadnij poprawność twojej metody i oszacuj czas jej działania.

4. [2 pkt.] Dana jest n–elementowa nieuporządkowana tablica liczb rzeczywistych T [0 . . . n−1] (liczby w tej
tablicy są unikatowe, czyli nie ma w niej dwóch identycznych wartości). Element w tablicy nazywamy
lokalnym minimum, jeśli sąsiadujące z nim elementy są większe od niego. Opracuj algorytm, który
znajdzie jakiekolwiek lokalne minimum w tablicy T .

∗

5. [1.5 pkt.] Zmodyfikuj podany na wykładzie algorytm dla problemu optymalnego mnożenia macierzy, tak
aby wypisywał on ciąg n macierzy wraz z poprawnie rozstawionymi nawiasami na podstawie wyliczonej
w trakcie działania algorytmu tablicy pomocniczej L[1 . . . n][1 . . . n]. Samo wypisanie wspomnianego
ciągu macierzy wraz z nawiasami powinno posiadać złożoność czasową rzędu O(n).

6. [2 pkt.] Uogólnij algorytm znajdowania optymalnego drzewa BST dla uporządkowanego zbioru n war-
tości s1 < s2 < . . . < sn na przypadek, gdy znane są prawdopodobieństwa zapytań o każdą wartość
p1, p2, . . . , pn oraz prawdopodobieństwa zapytań o watości spoza tego zbioru q0, q1, . . . , qn (qi to praw-
dopodobieństwo zapytania o wartość znajdującą się pomiędzy si a si+1, dla i = 1, . . . , n− 1; natomiast
q0 to prawdopodobieństwo zapytania o wartość mniejszą od s1, a qn o wartość większą od sn). Uzasadnij
poprawność zaproponowanego algorytmu i przeanalizuj jego złożoność obliczeniową.

Uwaga. Oczywiście wszystkie prawdopodobieństwa sumują się do 1, czyli
∑n

i=1 pi +
∑n

i=0 qi = 1 .

7. [2 pkt.] Zadana jest liczba naturalna n > 1. Liczbę tą należy przedstawić w postaci sumy kwadratów
liczb naturalnych. Suma ta ma się składać z minimalnej liczby składników. Przedstaw efektywny algo-
rytm rozwiązujący ten problem, uzasadnij jego poprawność i oszacuj złożononość obliczeniową. Wykaż,
że strategia zachłanna nie zawsze daje optymalny wynik.

Przykład. Rozważmy liczby 13, 16 i 27. Można je następująco przedstawić w postaci sumy kwadratów
o minimalnej liczbie składników:

• 13 = 22 + 32

• 16 = 42

• 27 = 12 + 12 + 52 = 32 + 32 + 32

1



∗

8. [2 pkt.] Dany jest zbiór n punktów na prostej p1, p2, . . . , pn. Każdy punkt ma określoną współrzędną
rzeczywistą, odpowiednio x1, x2, . . . , xn. Opracuj efektywny algorytm, który wyznaczy najmniejszy zbiór
jednostkowych przedziałów domkniętych zawierający wszystkie n punktów. Uzasadnij poprawność za-
prezentowanego algorytmu i oszacuj jego złożoność obliczeniową.

9. [2 pkt.] Szczególnym przypadkiem dyskretnego problemu plecakowego jest łatwy problem plecakowy
— mamy z nim do czynienia wtedy, gdy uporządkowane rosnąco wartości przedmiotów tworzą ciąg
superrosnący (ciąg liczb jest superrosnący, gdy każda kolejna liczba jest większa od sumy wszystkich
wcześniejszych). Ułóż algorytm rozwiązujący taką wersję problemu plecakowego i udowodnij, że znajduje
on optymalne rozwiązanie. Jaki jest czas działania twojego algorytmu?

10. [2.5 pkt.] Uogólnij algorytm Huffmana dla kodów trójkowych (kodów używających symboli 0, 1 i 2)
i czwórkowych (kodów używających symboli 0, 1, 2 i 3). Udowodnij, że twoje algorytmy generują kody
optymalne.

2


