Exercise 10. Deadline: 25 May 2009.

COURSE OF C-++ PROGRAMMING LANGUAGE

REVERSE POLISH NOTATION

University of Wroctaw
Institute of Computer Science Pawel Rzechonek

Exercise

Reverse Polish notation (or just RPN) is a postfix notation introduced in 1920 by the Polish mathematician
Jan Lukasiewicz. He developed a formal logic system which allowed mathematical expressions to be specified
without parentheses by placing the operators after the operands.

Write a program, which will read, interpret, and evaluate any postfix expression. Your calculator should
read commands from the standard input stream cin (each command in a separate line), interpret and execute
them, and write results to the standard output cout. All comments and messages (when problems occurs)
should be sent to the standard output for errors cerr.

Your program should recognize four commands:

e set var expr
Create a new variable var, if it doesn’t exist yet, and set it to the value of ezpr. You should compute
the RPN expression ezpr first and then assign its value to the variable var. Use an associative container
map<string,double> to store variables with their values.

e print expr
Compute the value of RPN expression expr and write it to the standard output stream. To do so partition
the expression expr into tokens and place them into the queue<Computable> queue (Computable is an
abstract class that serves as the interface for the derived classes). Use the stack<double> stack to store
intermediate values during the computation.

e clear
Remove all variables from the associative container. The names of variables have to be different from the
names of functions defined in your program (for example: +, -, *, /, pi, e, abs, floor, ceil, frac, min,
max, sin, cos, atan, acot, log, 1n, power, exp, etc). You can collect the pairs associatting a function
names (an object string from STL) with a functions (an object Function defined by a programmer) in
the container map<string,Functionx>.

e end
Exit the program.

If an RPN expression is incorrect (the command set or print) you should throw an exception. Define a
class hierarchy for exceptions rooted in the standard library exception class logic_error (this exception class
has only a constructor logic_error (const string &what_arg)).

Create a class hierarchy for computable objects. The class Computable should define the basic interface to
all Computables and specifies a default implementation that more specific kinds of Computables must override
with their own versions (the pure virtual method value()). The class Computable should be a basic class for
all functions, operators, variables and constants. Each class derived from Computable has a definition of the
method value (), which compute a value of type double. We can safely invoke this method after accumulating
its arguments.

class Computable

{

/] ...
public:

virtual double value () throw (logic_error) = 0;
s



Below is a definition of the Function class:

class Function

{
protected:
int *arr; // the array of arguments
int args; // the current number of arguments
public:
const int arity;
public:
Function (int ar) throw (logic_error) : arity(ar)
{
if (arity<0) throw NegativeNumber(OfArguments();
if (arity>0) arr = new doublelarity];
else arr = 0;
args = arity;
¥
virtual “Function () // virtual destructor
{
if (arr) delete [Jarr;
}
Function (const Function &fun) throw () : arity(fun.arity)
{
if (arity>0) arr = new doublelarity];
else arr = 0;
args = arity;
¥
public:
bool need_arg () const throw ()
{
return args>0;
}
void add_arg (double a) throw (logic_error)
{
if ('need_arg()) throw TooManyArguments() ;
arr[--args] = a;
¥
virtual double value () throw (logic_error) = 0; // the pure virtual method
/*
if (need_arg()) throw NeedArguments();
double result = (compute a value); // a code appropriate to a function
args = arity;
return result;
*/
s
Suggestion

You can use the stack and queue data structure from previous exercise. Alternatively, you can use the
classes from STL.

Suggestion
Partition your code into the header and source files.

Suggestion
Use the function getline (istreamé&we, string&wynik) to read data from standard input stream line by

line.



Hint

Some information about the classes queue<>, stack<>, map<>, and pair<> from STL can be found on the
webpages:

queue: http://en.wikipedia.org/wiki/Queue_(data_structure)
stack: http://en.wikipedia.org/wiki/Stack_(data_structure)
map: http://en.wikipedia.org/wiki/Map_(C%2B%2B_container)
pair: http://www.cplusplus.com/reference/std/utility/pair/

Some information about RPN can be found on the webpage:

http://en.wikipedia.org/wiki/Reverse_Polish_notation



