Exercise 5. Deadline: 23 November 2009.

THE JAVA PROGRAMMING LANGUAGE

GRAPH REPRESENTATIONS

University of Wroctaw
Institute of Computer Science Pawel Rzechonek

Exercise

A graph is an abstract representation of a set of objects where some pairs of the objects are connected by
links. The interconnected objects are represented by mathematical abstractions called vertices, and the links
that connect some pairs of vertices are called edges. In computer science, a graph is an abstract data structure
that is meant to implement the graph concept. More formally, a graph G = (V, E) is a finite nonempty set V'
of objects called vertices (we can assume that V = {0,1,2,...}) together with a (possibly empty) set E of
unordered pairs of distinct vertices of G called edges. A graph data structure may also associate to each edge
some edge value, such as a numeric attribute (cost, capacity, length, etc).

The basic operations provided by a graph data structure G usually include:

e G.size(): tells about the number of vertices in G;
e G.adjacent(x,y): tests whether there is an edge from node x to node y;
G.neighbors(x): lists all nodes y such that there is an edge from x to y;
e G.add(x,y): adds to G the edge from x to y, if it is not there;
G.delete(x,y): removes the edge from x to y, if it is there;
e G.get node_value(x): returns the value associated with the node x;
e G.set_node_value(x,a): sets the value associated with the node x to a.
Structures that associate values to edges usually provide also:
e G.get_edge_value(x,y): returns the value associated to the edge (x,y);
e G.set_edge_value(x,y,v): sets the value associated to the edge (x,y) to v<0.

Your task is to define interface Graph for mentioned graph operations. Next, create two implementations
for the interface: as an adjacency matriz for dense graphs (a class AdjMatrixGraph), and as an adjacency lists
for sparse graphs (a class AdjListsGraph). A dense graph is a graph in which the number of edges is close to
the maximal number of edges. The opposite, a graph with only a few edges, is a sparse graph.

Finally write a short program, which will test your both graph implementations. Generate a random graph
and store it into two representations (adjacency matrix and adjacency lists) and check the graph is connected.
A graph G = (V, E) is connected if there is a path between all pairs of vertices u and v of V.

Implement the method toString in the classes AdjMatrixGraph and AdjListsGraph.

Hint
Some information about graphs can be found on the webpage:

http://en.wikibooks.org/wiki/Data_Structures/Graphs



