
laboratorium: zadanie 5 termin: 18 listopada 2009 r.

kurs programowania w Javie
abstrakcyjne drzewa składni dla programów

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zdefiniuj publiczny interfejs Obliczalny, który będzie reprezentowć obiekty, które umieją policzyć wyra-

żenie całkowitoliczbowe metodą oblicz(). Metoda ta ma zwracać wartość typu Integer.
Zdefiniuj też publiczny interfejs Wykonywalny, który będzie reprezentowć obiekty, które umieją wykonać

ciąg obliczeń metodą wykonaj(). Metoda ta nie powinna zwracać żadnej wartości.
Zaprojektuj i zdefiniuj własną hierarchię wyjątków potrzebną do realizacji poniższych zadań. Na szczycie

tej hierarchii powinna się znaleźć publiczna klasa Wyjatek dziedzicząca po Exception.

Zadanie 2.
Zdefiniuj publiczną i abstrakcyjną klasę bazową Wyrazenie reprezentującą drzewo obliczeń dla całkowito-

liczbowego wyrażenia arytmetycznego. Klasa ta powinna implementować intefejs Obliczalny bez definiowania
metody oblicz().

Następnie zdefiniuj całą hierarchię klas dziedziczących po klasie Wyrazenie, które będą reprezentowały:
liczbę całkowitą, zmienną (zmienne mają być pamiętane w kolekcji HashMap<String,Integer> zadeklarowanej
jako pole statyczne w klasie Zmienna), operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie,
modulo i jednoargumentową zmianę znaku) oraz porównania (równe, różne, mniejsze, większe, mniejsze–
równe i większe–równe). Obliczenie porównania ma zwracać wartość 1 albo 0, w zależności od tego czy
warunek jest prawdziwy czy fałszywy. Przy obliczaniu dzielenia lub modulo trzeba zgłosić wyjątkek, gdy
dzielnik ma wartość 0 (zdefiniuj własną klasę wyjątku). Konstruktory wymienionych klas powinny sprawdzać,
czy ich argumenty są różne od null, a jeśli nie są to mają zgłosić odpowiedni wyjątek (zdefiniowany przez
programistę). W klasach dziedziczących po Wyrazenie zdefiniuj metodę oblicz().

Napisz krótki program testowy, sprawdzający działanie obiektów tych klas. Niech twój program obliczy i
wypisze wartość następujących wyrażeń (ustaw zmienną x na wartość −1 a amienną y na wartość 2):

3+5
7*11+25/y
(3*11-1)/(7+5)
((x+1)*x)/2!=0
(2*x+1)%(x+1)<1==0
-(3*x*x+4*y*y)
z+x+y

Zadanie 3.
Zdefiniuj publiczną i abstrakcyjną klasę bazową Instrukcja reprezentującą drzewo obliczeń w programie.

Klasa ta powinna implementować intefejs Wykonywalny bez definiowania metody wykonaj().
Następnie zdefiniuj klasy dziedziczące po klasie Instrukcja, które będą reprezentowały: instrukcję blo-

kową, deklarację zmiennej (zmienne zapamiętuj w kolekcji HashMap<String,Double> i inicjalizuj wartością
0), instrukcję przypisania wartości wyrażenia do zmiennej, instrukcje warunkowe (takie jak instrukcje if oraz
if-else w języku C), instrukcje pętli (takie jak instrukcje while i do-while w języku C), instrukcję czytania
ze standardowego wejścia oraz instrukcję pisania na standardowe wyjście. Warunek w instrukcji warunkowej
lub w pętli jest wyrażeniem (warunek jest prawdziwy tylko wtedy gdy wartość wyrażenia jest różna od 0). In-
strukcja blokowa powinna być inicjalizowana dowolną liczbą instrukcji wewnętrznych (konstruktor ze zmienną
liczbą argumentów); pozatym instrukcja ta ma spamiętywać jakie zmienne zostały utworzone w tym bloku i
na końcu ma je usunąć (nie wolno tworzyć zmiennych o takich samych nazwach). Konstruktory wymienionych

1



klas powinny sprawdzać, czy ich argumenty są różne od null, a jeśli nie są to mają zgłosić odpowiedni wyjątek.
W klasach dziedziczących po Instrukcja zdefiniuj metodę wykonaj().

Napisz krótki program testowy, sprawdzający działanie obiektów tych klas. Niech twój program sprawdzi,
czy wczytana liczba jest pierwsza. Program ten może działać według następującego schematu:

var n;
read n;
if (n<2) write 0;
else
{

var p;
var wyn;
p = 2;
while (p*p<=n)
{

if (n%p==0)
{

wyn = p;
p = n;

}
p = p+1;

}
if (wyn>0) write 0;
else write 1;

}

Uwaga 1.
Wszystkie wyjątki, interfejsy i klasy (oprócz klas z programami testowymi) umieść w pakiecie obliczenia.

Uwaga 2.
W każdej klasie z pakietu obliczenia zdefiniuj metodę toString(), która będzie potrafiła zrekonstruować

tekstową postać wyrażenia czy programu.

Uwaga 3.
Umieść w swoim programie co najmniej jedną asercję.

2


