
laboratorium: zadanie 3 termin: 29–30 października 2013 r.

kurs programowania w Javie
drzewa obliczeń

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zdefiniuj klasę Para, która będzie przechowywać pary klucz–wartość, gdzie klucz jest identyfikatorem typu

String a skojarzona z nim wartość to liczba całkowita typu int. Klucz powinien być polem publicznym ale
niemodyfikowalnym, a wartość polem ukrytym, które można odczytać za pomocą gettera i zmodyfikować tylko
za pomocą settera.

public class Para {
public final String klucz;
private int wartość;
// ...

}

W klasie tej zdefiniuj metody toString() oraz equals(Object) — dwie pary są równe gdy mają takie same
klucze.
Następnie zdefiniuj klasę Zbior, która będzie realizować operacje wyszukania wartości związanej z zadanym

kluczem, wstawienia nowej pary do zbioru, zliczenia wszystkich elementów w zbiorze i usunięcia wszystkich
par.

public class Zbior {
// ...
public void wstaw (String kl, int wart) throws IllegalArgumentException {
/* ... */ }

public int szukaj (String kl) throws IllegalArgumentException {
/* ... */ }

public int ile () {
/* ... */ }

public void czyść () {
/* ... */ }

}

W klasie Zbiór przechowuj elementy typu Para w tablicy par (nie korzystaj z kolekcji standardowych). W
klasie tej zdefiniuj metody toString() oraz equals(Object) — dwa zbiory są równe gdy zawieraja takie
same zbiory kluczy.

Zadanie 2.
Zdefiniuj abstrakcyjną klasę bazową Wyrazenie, reprezentującą wyrażenie arytmetyczne. W klasie tej

umieść deklarację abstrakcyjnej metody oblicz(), której zadaniem w klasach potomnych będzie obliczanie
wyrażenia i przekazywanie wyniku jako wartości typu int.
Następnie zdefiniuj klasy dziedziczące po klasie Wyrazenie, które będą reprezentowały kolejno liczbę (stała

całkowitoliczbowa), zmienną (wszystkie zmienne pamiętaj w polu statycznym typu Zbior w zdefiniowanym
wcześniej zbiorze par klucz–wartość), operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie
i modulo oraz jednoargumentowa operacja zmiany znaku na przeciwny), porównania (wynikiem porównania
ma być jak w języku C liczba 0 albo 1 odpowiadająca wartościom logicznym false albo true), itp. Klasy te
powinny być tak zaprojektowane, aby można z nich było zbudować drzewo wyrażenia: obiekty klas Liczba lub
Zmienna to liście, a operatory to węzły wewnętrzne w takim drzewie. W klasach potomnych zdefiniuj metody
oblicz() oraz toString(). W klasach tych podefiniuj metody toString() oraz equals(Object).

1



Stala Zmienna Operator1Arg

PrzeciwnyZnak WartBezwzgl Operator2Arg

Wyrazenie

Dziel ModuloMnoz Minimum MaksimumOdejmijDodaj

RozneMniejszeRowne WiekszeRowneWiekszeMniejszeRowne

Na koniec napisz krótki program testowy, sprawdzający działanie obiektów tych klas. W swoim programie
skonstruuj drzewa obliczeń, wypisz je metodą toString() a potem oblicz i wypisz wartość dla następujących
wyrażeń:

3+5
2+x*7
(3*11-1)/(7+5)
((x+13)*x)/2
17*x+19<0

Na przykład wyrażenie 7+x*5 należy zdefiniować następująco:

Wyrazenie w = new Wyrazenie(
new Dodaj(
new Liczba(7),
new Mnoz(
new Zmienna("x"),
new Liczba(5)

)
)

);

Ustaw na początku programu testowego zmienną x na wartość -3.

Zadanie 3.
Zdefiniuj abstrakcyjną klasę bazową Instrukcja, reprezentującą instrukcję w programie. W klasie tej

umieść deklarację abstrakcyjnej metody wykonaj(), której zadaniem w klasach potomnych będzie wykonywa-
nie odpowiednich obliczeń.
Następnie zdefiniuj klasy dziedziczące po klasie Instrukcja, które będą reprezentowały kolejno deklara-

cję zmiennej (zmienne zapamiętuj na stosie par klucz–wartość), instrukcję przypisania wartości wyrażenia do
zmiennej, instrukcję warunkową (taką jak instrukcja if /if-else w języku C), instrukcję pętli (taką jak instrukcja
while/do-while w języku C), przy czym warunki są wyrażeniami (warunek jest prawdziwy tylko wtedy gdy
wartość wyrażenia jest różna od 0), instrukcje czytania ze standardowego wejścia i pisania na standardowe
wyjście oraz instrukcję blokową (złożenie dwóch lub więcej instrukcji). Instrukcja blokowa powinna na za-
kończenie likwidować wszystkie zmienne, które zostały stworzone podczas jej wykonania. Klasy te powinny
być tak zaprojektowane, aby można z nich było zbudować drzewo sterujące sekwencją obliczeń. W klasach
potomnych zdefiniuj metody wykonaj() a także metody toString() oraz equals(Object).
Na koniec napisz krótki program testowy, sprawdzający działanie obiektów tych klas. W swoim programie

skonstruuj drzewo obliczeń dla programu obliczającego silnię:

var silnia;
silnia = 1;
var n;
read n;
if (n>1)
{
var i;

2



i = 2;
while (i<=n)
{
silnia = silnia*i;
i = i+1;

}
}
write silnia;

Wydrukuj swój program metodą toString() a potem wykonaj go.

Uwaga 1.
Klasę Zbior zaimplementuj w jakiś prosty sposób, na przykład używając tablicy Para[] o ograniczonej

wielkości.

Uwaga 2.
W swoich programach nie czytaj ani nie analizuj danych ze standardowego wejścia. Drzewa wyrażeń i

drzewo obliczeń zdefiniuj na stałe w swoich programach testowych.

Uwaga 3.
Definicje klas Wyrazenie i Instrukcja oraz ich klas pochodnych umieść w pakiecie narzedzia.obliczenia.

Uwaga 4.
Program należy skompilować i uruchomić z wiersza poleceń!

3


