
KURS JĘZYKA C++
– WYKŁAD 6 (28.03.2018)

Polimorfizm



SPIS TREŚCI

 Metody wirtualne

 Implementacja polimorfizmu

 Wczesne i późne wiązanie metod wirtualnych

 Klasy abstrakcyjne



SKŁADOWE FUNKCJE WIRTUALNE

 Składowe funkcje wirtualne pozwalają na przedefiniowanie w 
każdej klasie pochodnej funkcji składowych zadeklarowanych 
w klasie bazowej.

 Poprzez funkcje wirtualne w programie zapewnione jest 
wywołanie metody najlepiej odpowiadającej obiektowi.

 Składowe funkcje wirtualne należy opatrzyć deklaratorem 
virtual (wewnątrz klasy).

 Składowe funkcje wirtualne nadpisywane w klasach 
pochodnych należy opatrzyć deklaratorem override
(wewnątrz klasy).

 W definicji metody wirtualnej lub wirtualnej i nadpisywanej 
poza klasą nie używa się ani deklaratora virtual ani 
deklaratora override.



SKŁADOWE FUNKCJE WIRTUALNE

 Przykład deklaracji klas z metodami wirtualnymi i zwykłymi:

class bazowa

{

public:

void opis_zwykly ();

virtual void opis_wirtualny ();

};

class pochodna: public bazowa

{

public:

void opis_zwykly ();

void opis_wirtualny () override;

};



SKŁADOWE FUNKCJE WIRTUALNE

 Przykład definicji metod wirtualnych i zwykłych:

void bazowa::opis_zwykly()

{ cout << "bazowa::opis_zwykly()" << endl; }

void bazowa::opis_wirtualny()

{ cout << "bazowa::opis_wirtualny()" << endl; }

void pochodna::opis_zwykly()

{ cout << "pochodna::opis_zwykly()" << endl; }

void pochodna::opis_wirtualny()

{ cout << "pochodna::opis_wirtualny()" << endl; }



SKŁADOWE FUNKCJE WIRTUALNE

 Przykład użycia metod wirtualnych i zwykłych:

bazowa *a = new bazowa();

a->opis_zwykly();

a->opis_wirtualny();

// bazowa::opis_zwykly()

// bazowa::opis_wirtualny()

bazowa *b = new pochodna();

b->opis_zwykly();

b->opis_wirtualny();

// bazowa::opis_zwykly()

// pochodna::opis_wirtualny()



SKŁADOWE FUNKCJE WIRTUALNE

 Funkcja wirtualna musi być zdefiniowana dla klasy, w 
której po raz pierwszy została zadeklarowana.

 Funkcji wirtualnej można używać nawet wtedy, gdy z jej 
klasy nie wyprowadzi się żadnej klasy pochodnej.

 Klasa pochodna, która nie potrzebuje specjalnej wersji 
funkcji wirtualnej, nie musi jej dostarczać.

 Funkcja w klasie pochodnej z tą samą nazwą i z tą samą 
listą argumentów co funkcja wirtualna w klasie 
podstawowej nadpisuje (ang. override) starą wersję 
funkcji wirtualnej z klasy bazowej.



POLIMORFIZM

 Uzyskanie zachowania się funkcji adekwatnego do typu 
obiektu nazywa się polimorfizmem (ang. polymorphism).

 Klasa z funkcjami wirtualnymi nazywa się klasą 
polimorficzną.

 Aby zachowanie obiektu było polimorficzne należy się do 
niego odnosić za pomocą wskaźnika albo referencji.

 Dzięki polimorfizmowi programy stają się rozszerzalne
(ang. extensibility) – modyfikacja kodu polega na dodaniu 
nowej klasy bez potrzeby zmian w kodzie istniejącym.



IMPLEMENTACJA ZACHOWAŃ POLIMORFICZNYCH

 Obiekty klas polimorficznych mają dodatkowe pole 
identyfikujące typ obiektu.

 Decyzję o wyborze funkcji do wykonania podejmuje się w 
trakcie działania programu (jest to tak zwane późne 
wiązanie, w przeciwieństwie do zwykłych funkcji gdzie 
obowiązuje wczesne wiązanie).

 Każda klasa polimorficzna posiada swoje miejsce w tablicy 
metod wirtualnych.

 Polimorfizm jest więc kosztowny (miejsce i czas) – dlatego 
nie wszystkie metody są wirtualne.



REZULTAT FUNKCJI WIRTUALNEJ

 Przy nadpisywaniu funkcji wirtualnej trzeba zachować 
odpowiedni typ rezultatu:
 albo rezultat musi być identyczny,

 albo rezultat musi być kowariantny (referencja lub wskaźnik 
do obiektu tej samej klasy lub do klasy, dla której jest ona 
jednoznaczną i dostępną klasą bazową).

 Przykład:
owoc* bazowa::fun () {/*…*/}

pomelo* pochodna::fun () {/*…*/}



INNE CECHY FUNKCJI WIRTUALNYCH

 Funkcja wirtualna w klasie nie może być statyczna.

 Funkcja wirtualna w klasie nie jest wbudowywana gdy 
korzystamy z polimorfizmu.

 Dostęp do funkcji wirtualnej może być zmieniony w 
klasach pochodnych (co zależy od sposobu 
dziedziczenia) – dostęp ten zależy więc tylko od typu 
wskaźnika albo referencji.

 Funkcje wirtualne mogą być przyjaciółmi w innych 
klasach.



FUNKCJA WIRTUALNA

WCZEŚNIE ZWIĄZANA

 Funkcja wirtualna będzie wcześnie związana gdy będzie 
wywołana na rzecz konkretnego obiektu znanego z nazwy:
klasa ob;
// …
ob.funwirt();

 Funkcja wirtualna będzie wcześnie związana gdy użyjemy 
kwalifikatora zakresu:
wsk->klasa::funwirt();
ref.klasa::funwirt();

 Funkcja wirtualna będzie wcześnie związana gdy wywołamy 
ją w konstruktorze.

 Funkcja wirtualna może być wbudowana, gdy korzystamy z 
wczesnego wiązania funkcji wirtualnych.



KLASY ABSTRAKCYJNE

 Klasy abstrakcyjne służą do definiowania interfejsów (pojęć 
abstrakcyjnych).

 Klasa abstrakcyjna zawiera co najmniej jedną abstrakcyjną metodą 
wirtualną (funkcja czysto wirtualna).

 Deklaracja metody czysto wirtualnej wygląda następująco:
virtual typ funkcja (lista-argumentów) = 0;

 Nie trzeba (ale można) podawać definicji metody czysto wirtualnej.

 W klasach potomnych, które nie mają być klasami abstrakcyjnymi, 
należy zdefiniować wszystkie odziedziczone metody abstrakcyjne. 

 Klasa potomna, w której nie będą zdefiniowane wszystkie odziedziczone 
metody abstrakcyjne, będzie nadal klasą abstrakcyjną.



KLASY ABSTRAKCYJNE

 Nie wszystkie metody w klasie abstrakcyjnej muszą być abstrakcyjne.

 Żaden konstruktor ani destruktor nie może być abstrakcyjny.

 Nie można utworzyć obiektu klasy abstrakcyjnej:

 nie wolno zdefiniować funkcji, która odbierałaby argument takiej klasy 
przez wartość;

 nie wolno zdefiniować funkcji, która zwracałaby wynik takiej klasy przez 
wartość;

 klasa abstrakcyjna nie może być typem w jawnej konwersji.



WIRTUALNY DESTRUKTOR

 W klasach polimorficznych (zawierających metody 
wirtualne) destruktor definiujemy jako wirtualny.



KONSTRUKTOR NIE MOŻE BYĆ WIRTUALNY ALE…

 Czasami istnieje potrzeba wyprodukowania nowego 
obiektu tej samej klasy – w takiej sytuacji można 
zdefiniować funkcję wirtualną, która będzie 
przygotowywać taki obiekt (zastąpi konstruktor 
domyślny albo kopiujący).


