KURS JEZYKA C++
— WYKLAD 7 (11.04.2018)
@

‘ Wyijatki
©
O

SPIS TRESC]

Ogdlne spojrzenie na wyjatki

Zgtaszanie i fapanie wyjgtkow

Grupowanie wyjgtkow

Dopasowywanie wyjgtkow

Implementacja mechanizmu zgtaszania i tapania wyjatkow
Wyijatki w konstruktorach i w destruktorach
Zdobywanie zasobow poprzez inicjalizacje
Specyfikacja wyjatkow

Wyijatki oraz newidelete

Wyijatki z biblioteki standardowej

Wtasne wyijatki

O O 0O 0O 0O 0O 0O 0O 0O 0O 0 O

Asercje

OGOLNE SPOJRZENIE NA WYJATKI

o Wyijatki zaprojektowano do wspierania obstugi btedoéw.

o System wyjatkow dotyczy zdarzen synchronicznych — na
przyktad do kontroli zakresu czy btedéw we/wy.

o Mechanizm obstugi wyjatkdw mozna traktowac jako
nielokalng strukture sterujacg, ktora korzysta ze zwijania
stosu.

OBStUGA BLEDOW

o Wyjatek to obiekt sygnalizujgcy btad.
o Wyjatki mozna zgtaszac po wykryciu sytuacji krytycznej
instrukcjg throw.

o Wyjatki zgtoszone w bloku t ry mozna wytapac¢ w bloku
catch iobstuzyc sytuacje problemowa.

o Wyjatki w sposéb naturalny dzielg kod na czes¢
obliczeniowg i czesc sterujgcg obliczeniami.

ZGLASZANIE | tAPANIE WYJATKOW

o Wyijatek to obiekt dowolnego typu.

o Kod wykrywajgcy btad zgtasza wyjatek instrukcjg throw, na przyktad:
throw 15;
throw "problem z dokladnoé$cia obliczen";
throw moja klasa(7.532);

o Ched ztapania wyjatku sygnalizuje sie umieszczeniem kodu w instrukgc;ji
try—-catch.

o Wynikiem dziatania throw jest zwiniecie stosu, az do znalezienia
odpowiedniego bloku catch (w funkcji, ktéra bezposrednio lub
posrednio wywotata funkcje zgtaszajgca wyjatek).

ZGLASZANIE | tAPANIE WYJATKOW

o Przyktad zgtoszenia i obstugi btedu:

try
{
int x = 0;
cerr << "integer (>0) ";
cin >> x;
if (!'cin) throw "i/o error";
1f (x<=0) throw x;
/..

}

catch (const char *ex)

{
}
catch (int ex)

{
}

cerr << "number format error" << endl;

cerr << "number value error" << endl;

ZGLASZANIE | tAPANIE WYJATKOW

o Program moze obstugiwac tylko wyjatki zgtaszane w
bloku try.

o Po zgtoszeniu wyjatku, sterowanie nie wraca juz do
miejsca zgtoszenia.

o Po obstuzeniu wyjatku w bloku catch sterowanie
przenoszone jest za instrukcje try—-catch.

o Wyjatki sg rozrdzniane po typie.

o Funkcje call-back’owe potrafig rozwigzac problem w
miejscu jego wystgpienia.

GRUPOWANIE WYJATKOW

o Wyjatki czesto w sposdb naturalny tworzg rodziny (zastosowanie
dziedziczenia w strukturalizacji wyjatkow).

o Przyktad hierarchii wyjgtkow:
class BladMat {};
class Nadmiar : public BladMat {};
class Niedomiar : public BladMat {};
class DzielZero : public BladMat {};

o Przyktad organizacji rozpoznawania wyjgtkow:
try

{
// throw ..;

}
catch (DzielZero) {/*..*/}

catch (BladMat) {/*..*/} '
o)

o Kolejnos¢ blokow catch ma znaczenie przy rozpoznawaniu wyjatk

DOPASOWYWANIE WYJATKOW

o Rozwazmy przyktad:
try
{
throw E;
}
catch (H)
{
// kiedy sie tutaj znajdziemy?
}

[EEY

H jest tego samego typu co E;

N

H jest jednoznaczng publiczng klasg bazowg dla E;

H i E sg wskaznikami, a dla typdw na ktdre wskazujg zachodzi 1) lub 2);

W

H jest referencja, a dla typu do ktdrego sie odnosi zachodzi 1) lub 2).
H jest obiektem statym, a dla typu do ktérego sie odnosi zachodzi 1) lub 2)‘

Ul

ZtAPANIE KAZDEGO WYJATKU

o0 Mozna wytapac kazdy wyjatek blokiem
catch(...).

o Blok catch (...) moze wystapic tylko jako
ostatni blok.

o W bloku catch (.. .) niejest znany typ wyjatku.

o W bloku catch mozna powtdrnie zgtosi¢ ten sam
wyjatek ktory wtasnie zostat wytapany instrukcja
throw bez argumentow.

o Zgtoszenie innego wyjatku w bloku catch mozna
traktowac jak podmiane wyjatku (mozna zmienic
nie tylko wartos¢ ale i typ zgtaszanego wyjatku).

ZAGNIEZDZANIE
INSTRUKCJI TRY-CATCH

o Instrukcje try—catch mozna umiesci¢ w bloku t ry — wtedy
niewytapane wyjatki w wewnetrznej instrukcji try—-catch
bedg zgtoszeniem wyjatku w zewnetrznym bloku try.

o Instrukcje try—catch mozna rowniez umiesci¢ w bloku
catch —wtedy niewytapane wyjgtki w wewnetrznej instrukcji
try—-catch bedg traktowane jak zgtoszenie wyjgtku w
zewnetrznym bloku catch.

IMPLEMENTACJA MECHANIZMU ZGtASZANIA |
FAPANIA WYJATKOW

o Odwiktanie stosu — wielkie sprzatanie.

o Po zgtoszeniu instrukcjg throw obiekt wyjatku jest
umieszczany w pamieci globalnej w specjalnie do tego
przeznaczonym miejscu.

o Wyjatek uznaje sie za obstuzony w momencie jego wytapania
przez jakis blok catch, ale dopiero przy wyjsciu z tego bloku
wyjatek jest likwidowany.

o Nie wolno rzucac wyjatkow, gdy inny wyjatek jest w trakcie
lotu.

WYIJATKI W KONSTRUKTORACH
| W DESTRUKTORACH

o Nie wolno zgtasza¢ wyjatkow w destruktorach, bo to
moze powodowac problemy przy odwiktaniu stosu.

o Gdy wyjatek zostanie zgtoszony w konstruktorze, to
obiekt nie zostanie utworzony.

o Gdy wyjatek zostanie zgtoszony w konstruktorze w
trakcie inicjalizacji czesci odziedziczonej lub obiektu
sktadowego, to zainicjalizowana czesc¢ zostanie
automatycznie zlikwidowana.

o Gdy chcemy zgtosi¢ wyjatek w ciele konstruktora, to
najpierw nalezy zwolni¢ zasoby przydzielone w ciele
konstruktora.

ZDOBYWANIE ZASOBOW
POPRZEZ INICJALIZACIE

o Problem: kiedy funkcja na poczatku rezerwuje zaséb (otwiera strumien,
przydziela pamie¢, ustawia klucz kontroli dostepu, itp), to moze go na
koncu nie zwolni¢, gdy po drodze zostanie zgtoszony wyjatek.

o0 Rozwigzanie: zarzgdzanie zasobami poprzez opakowywanie ich klasami.
o Schemat postepowania:

» w konstruktorze klasy opakowujgcej zasob zostaje zarezerwowany (gdy
rezerwacja sie nie powiedzie zostaje zgtoszony wyjatek);

» klasa opakowujgca udostepnia narzedzia do korzystania z zasobu;

» w destruktorze klasy opakowujgcej zasob zostaje zwolniony (zadziata
rowniez w przypadku zwijania stosu przy zgtoszonym wyjatku).

ZDOBYWANIE ZASOBOW
POPRZEZ INICJALIZACIE

o Przyktad zdobywania zasobdw poprzez inicjalizacje:
class plik

{
FILE *wsk;
public:
plik (const char *naz, const char *atr)
{
wsk = fopen(naz,atr);
if (!wsk) throw brak pliku;

}
~plik () throw()
{ fclose(wsk); wsk = 0; }

)

operator FILE* () throw()
{ return wsk; }

};

/] .

plik p("a.txt”,”"r”);

double wsp;
fscanf (p,”%1f”, &wsp) ;

SPRYTNE WSKAZNIKI

0 Wzorzec klasy shared ptr wspiera technike zdobywania zasobow
poprzez inicjalizacje — jego definicja znajduje sie w pliku nagtowkowym
<memory>.

o Obiekt shared ptr jestinicjalizowany wskaZznikiem i mozna sie nim
postugiwac w programie jak zwyktym wskaznikiem.

o Konstruktor i przypisanie wzorca shared ptr zapewniajg niejawng

konwersje z shared ptr<P>do shared ptr oile mozna
dokonac konwersji z P* do B*.

o Wspotdzielony wskaznik shared ptr jest wskaznikiem ze zliczaniem
referencji.

o Wspotdzielony wskaznik shared ptr automatycznie niszczy swojg
zawartosc tylko, jesli nie ma juz wspoétdzielonych wskaznikéw
odnoszacych sie do obiektu poczatkowo tworzonego dla
wspotdzielonego wskaznika — wtedy w destruktorze shared ptr ,
zapewnione jest wywotanie operatora delete na wskazywany obiek®:

SPRYTNE WSKAZNIKI

o) S’raby wskaznik weak ptr jestreferencjg do shared _ptr, ktora
moze okreslaé, czy shared ptr byt kasowany czy tez nie.

0 Sam weak ptr nie ma na celu zachowywania sie jak zwykty wskaznik
— po prostu jest obiektem i dostep do faktycznego wskaznika wymaga
stworzenia obiektu shared ptr.

o Wskaznik weak ptr nie posiada tego obiektu, na ktorego wskazuje i
dlatego obecno$¢ weak ptr nie zapobiega niszczenia obiektu.

o Przyktad uzycia auto_ptr (zaktadamy, ze okrag dziedziczy po figura):

o Unikatowy wskaznik unique ptr jest nowym zamiennikiem starego
auto ptr, ktdry z kolei zostat oznaczony jako przestarzaty i odradzany
(ang. deprecated).

o Wskaznik unique ptr ma wszystkie mozliwosci auto ptr z
wyjatkiem niebezpiecznego niejawnego przenoszenia z I-wartosci.

o W przeciwienstwie do auto ptr, unique ptr moze byc stosowa
z kontenerami uwzgledniajgcymi przenoszenie. ‘

SPECYFIKACJA WYJATKOW

o Funkcja moze wyspecyfikowac zbior wyjatkow, ktore mogag by¢ rzucone
w trakcie wykonania funkcji na liscie kontrolnej.

o Lista kontrolna to fraza throw () na koncu nagtowka funkcji —w
nawiasie umieszczamy zbidér dopuszczalnych wyjatkdéw.

o Przyktady list kontrolnych:
vold K::f (int) const throw(exl, ex2, ex3);
// funkcja skladowa f (int) moze rzucié
// wyjatkiem typu exl, ex2 albo ex3
double g (double) throw();
// funkcja g(double) nie zglasza zadnych
wyJjatkow
volid h (void) ;
// funkcja h() moze zglosi¢ dowolny wyjatek

SPECYFIKACJA WYJATKOW

o Deklarator noexcept oznacza, ze metoda nie zgtasza
zadnych wyjatkow, jest to rownowazne throw ().

o Kazdy destruktor jest domysinie funkcjg noexcept
(wszystkie inne funkcje mogg domysinie zgtasza¢ kazdy
wyjatek).

SPECYFIKACJA WYJATKOW

o Nie jest mozliwe w czasie kompilacji sprawdzenie kazdego
naruszenia specyfikacji interfejsu. Jesli funkcja z lista
kontrolng sprobuje zgtosi¢ wyjatek spoza listy, to jest
wtedy wywotywana funkcja unexpected (), ktora
domyslnie wywotuje terminate ().

© Mozna jednak dostarczyc¢ i wywotac funkcje ratujaca,
ustawiajgc uchwyt unexpected handler za
pomocy set unexpected () —funkcja ratujgca typu
vold (*) () moze na przyktad zgtosi¢ wyjatek
bad exception (wyjatek ten trzeba wtedy dopisac do
listy kontrolnej) albo wywotaé funkcje exit ().

SPECYFIKACJA WYJATKOW

o Funkcje wirtualng mozna nadpisac tylko funkcja, ktorej specyfikacja
wyjatkow na liscie kontrolnej jest co najmniej tak restrykcyjna jak jej
wtasna specyfikacja.

o Przyktad nadpisywania funkcji wirtualnych:

class B

{

public:
virtual void £ ()
virtual void g () throw(X,Y);
virtual void h () throw (X);

by

class P: public B

{

public:
void f () override throw(X); // ok
void g () override throw(X); // ok
// void h () override throw(X,Y):;
// btad - dodanie nowego wyjatku Y do listy

}

WYJATKI ORAZNEW | DELETE

o Funkcje uzyte do implementacji operatorow new i delete sg zadeklarowane w
<new>. Deklaracja tych operatorow jest nastepujaca:
volid * operator new (size t) throw(bad alloc);
vold operator delete (void *) throw();
volid * operator new[] (size t) throw(bad alloc);
vold operator delete[] (void *) throw();

o Operator new (oraz new []) zgtasza wyjatek bad alloc, gdy nie uda sie
zarezerwowac pamieci na obiekt (tablice obiektow).

o Istnieje deklaracja obiektu, ktoéry powoduje, ze operator new nie zgtasza wyjatku,
tylko przekazuje wskaznik pusty:
struct nothrow t {};
extern const nothrow t nothrow;
Stworzono tez specjalne wersje operatora new z parametrem nothrow t, ktére
zapobiegajg zgtaszaniu wyjatkow:
void * operator new (size t, const nothrow t &)
throw () ;
void * operator new[] (slze t, const nothrow t &)
throw () ; ‘

WYJATKI ORAZNEW | DELETE

o0 Przyktad uzycia nothrow przy alokacji pamieci:
int *p = new 1nt[1000000];
// moze zglosi¢ wyjatek bad alloc

/.
// ponizszy kod nie zglosi wyjatku

1f (int *gq = new(nothrow) 1nt[1000000])
{

}

else

{

}

o Funkcjauncaught exception () zwraca true, gdy wyjatek
zgtoszono ale jeszcze nie wytapano — umozliwia to specyfikowanie
roznych dziatan w destruktorze zaleznie od tego, czy obiekt jest ‘

// przydzial sie powiddil

//przydzial nie powiddl sie

niszczony normalnie, czy w ramach zwijania stosu.

BRAK PAMIECI | OPERATOR NEW

o0 Gdy operator new probuje przydzieli¢ pamiec a wolnej
pamigci juz nie ma, to zgtasza on wyjatekbad alloc.

© Mozna jednak dostarczyc¢ i wywotac funkcje ratujaca,
ustawiajgc uchwyt new handler za pomocg
set new handler () —funkcja ratujgca typu
void (*) () powinna odzyskac pamiec, a jesli sie to nie
uda, to powinna zgtosi¢ wyjatek bad alloc.

O Gdy nie wytapiemy wyjatku bad alloc, to program
zakonczy sie wywotaniem funkcji terminate ().

BRAK PAMIECI | OPERATOR NEW

o Przyktad funkcji ratunkowej w przypadku braku pamieci:
volid new hnd ()

{
int bytes = find mem() ;
if (bytes<min alloc) throw bad alloc;

}
o Przyktad uzycia funkcji ratunkowej w przypadku braku pamieci:
set new handler (new hnd);

void (*old hnd) () =
try A

/o
}

catch (bad alloc) {
/]

}

catch (...) {
set new handler (old hnd);

throw;

}

set new handler (old hnd);

KONCZENIE PROGRAMU
W KRYTYCZNYCH SYTUACJACH

o0 Funkcja standardowa exit (int) konczy program w tagodny sposob
(oproznia bufory, zamyka pliki, itp).
o Funkcja standardowa abort () konczy program w drastyczny sposob
(bez kosmetyki dotyczacej bufordow, plikow, itp).
o0 Funkcja terminate (), w ktorej jest wywotywana funkcja abort (),
jest automatycznie wywotywana w sytuacjach krytycznych takich jak:
* rzucenie wyjatku, ktorego nie ztapat zaden blok catch;
* rzucenie wyjatku w trakcie lotu innego wyjatku;
* rzucenie wyjatku spoza listy kontrolne;.

o0 Za pomocg funkcji set terminate () mozemy zmieni¢ uchwyt
uncaught handler ustalajgc wtasng procedure obstugi zdarzen
krytycznych zwigzanych z wyjgtkami. Funkcja ta podmienia uchwyt do
funkcji wywotywanej w terminate () —standardowo jest to funkcja

abort ().

WYIJATKI Z BIBLIOTEKI STANDARDOWEJ

o Hierarchia klas wyjatkow standardowych:

os_base:faire|

WtASNE WYJATKI

o Wyjatkiem moze byc¢ dowolny obiekt, ale dobrze jest
projektowac wtasng hierarchie klas wyjatkow, ktora
dziedziczy po exception.

o Gdy definiujesz wtasny wyjatek, pamietaj aby nie
zgtaszat on innych wyjatkéw w konstruktorach, w
destruktorze i w przypisaniu kopiujgcym.

o Gdy definiujesz wtasny wyjatek dziedziczacy po
exception, pamietaj aby zdefiniowa¢ w nim
konstruktor domyslny, konstruktor kopiujacy,
przypisanie kopiujgce, wirtualny destruktor oraz
nadpisz metode what ().

ASERCIJE

O Za pomocg asercji mozemy oznaczy¢ w programie niezmienniki, czyli
warunki, ktére niezaleznie od wartosci zmiennych muszg pozostac
prawdziwe — jesli asercja zawiedzie, oznacza to, ze popetniliSmy btagd w
algorytmie albo nastgpifa sytuacja wyjatkowa.

o Makro assert () zdefiniowane w pliku nagtowkowym <cassert> stuzy
do debuggowania programow.

o Uzycie:
assert (wyrazenie) ;

o Dziatanie: jesli warunek, ktory testuje asercja jest prawdziwy to program
nie reaguje, natomiast w przypadku gdy warunek ten jest fatszywy to na

standardowe wyjscie dla btedéw zostanie wypisany odpowiedni komunikat
o btedzie i program zostanie przerwany za pomocg funkcji abort ().

o Aby pozbyc¢ sie asercji, uwalniajgc kod od spowalniajgcych obcigzen,
wystarczy przed dotgczeniem pliku nagtdéwkowego <cassert>
zdefiniowaé¢ makro NDEBUG — nie trzeba wdéwczas kasowac zadnych
wystgpien makra assert ().

ASERCJE STATYCZNE

o Starszy standard C++ posiada dwie metody do testowania asercji:
makro assert i dyrektywe preprocesora #error, jednak zaden z
nich nie jest odpowiedni do uzywania w szablonach (makro testuje
asercje w czasie wykonywania kodu, a dyrektywa preprocesora
testuje w fazie preprocesorowej, czyli przed tworzeniem instancji
szablondéw).

o Mozna testowac asercje rowniez w czasie kompilacji przy uzyciu
stowa kluczowego static assert:
static assert (state_wyrazenie, komunikat_btedu) ;

o Kiedy state_wyrazenie jest fatszywe, wtedy kompilator zgtasza
komunikat_bfedu.

o Statyczne asercje sg przydatne takze poza szablonami;
przyktadowo, jakas szczegdlna implementacja algorytmu mogtaby
zaleze od tego, aby rozmiar 1ong byt wiekszy niz rozmiar int,
czyli tego, czego standard nie zapewnia.

