
KURS JĘZYKA C++
– WYKŁAD 7 (11.04.2018)

Wyjątki

SPIS TREŚCI

 Ogólne spojrzenie na wyjątki

 Zgłaszanie i łapanie wyjątków

 Grupowanie wyjątków

 Dopasowywanie wyjątków

 Implementacja mechanizmu zgłaszania i łapania wyjątków

 Wyjątki w konstruktorach i w destruktorach

 Zdobywanie zasobów poprzez inicjalizację

 Specyfikacja wyjątków

 Wyjątki oraz new i delete

 Wyjątki z biblioteki standardowej

 Własne wyjątki

 Asercje

OGÓLNE SPOJRZENIE NA WYJĄTKI

 Wyjątki zaprojektowano do wspierania obsługi błędów.

 System wyjątków dotyczy zdarzeń synchronicznych – na
przykład do kontroli zakresu czy błędów we/wy.

 Mechanizm obsługi wyjątków można traktować jako
nielokalną strukturę sterującą, która korzysta ze zwijania
stosu.

OBSŁUGA BŁĘDÓW

 Wyjątek to obiekt sygnalizujący błąd.

 Wyjątki można zgłaszać po wykryciu sytuacji krytycznej
instrukcją throw.

 Wyjątki zgłoszone w bloku try można wyłapać w bloku
catch i obsłużyć sytuację problemową.

 Wyjątki w sposób naturalny dzielą kod na część
obliczeniową i część sterującą obliczeniami.

ZGŁASZANIE I ŁAPANIE WYJĄTKÓW

 Wyjątek to obiekt dowolnego typu.

 Kod wykrywający błąd zgłasza wyjątek instrukcją throw, na przykład:
throw 15;

throw "problem z dokładnością obliczeń";
throw moja_klasa(7.532);

 Chęć złapania wyjątku sygnalizuje się umieszczeniem kodu w instrukcji
try-catch.

 Wynikiem działania throw jest zwinięcie stosu, aż do znalezienia
odpowiedniego bloku catch (w funkcji, która bezpośrednio lub
pośrednio wywołała funkcję zgłaszająca wyjątek).

ZGŁASZANIE I ŁAPANIE WYJĄTKÓW

 Przykład zgłoszenia i obsługi błędu:
try
{

int x = 0;
cerr << "integer (>0) ";
cin >> x;
if (!cin) throw "i/o error";
if (x<=0) throw x;
// …

}
catch (const char *ex)
{

cerr << "number format error" << endl;
}
catch (int ex)
{

cerr << "number value error" << endl;
}

ZGŁASZANIE I ŁAPANIE WYJĄTKÓW

 Program może obsługiwać tylko wyjątki zgłaszane w
bloku try.

 Po zgłoszeniu wyjątku, sterowanie nie wraca już do
miejsca zgłoszenia.

 Po obsłużeniu wyjątku w bloku catch sterowanie
przenoszone jest za instrukcję try-catch.

 Wyjątki są rozróżniane po typie.

 Funkcje call-back’owe potrafią rozwiązać problem w
miejscu jego wystąpienia.

GRUPOWANIE WYJĄTKÓW

 Wyjątki często w sposób naturalny tworzą rodziny (zastosowanie
dziedziczenia w strukturalizacji wyjątków).

 Przykład hierarchii wyjątków:
class BladMat {};

class Nadmiar : public BladMat {};

class Niedomiar : public BladMat {};

class DzielZero : public BladMat {};

 Przykład organizacji rozpoznawania wyjątków:
try

{

// throw …;

}

catch (DzielZero) {/*…*/}

catch (BladMat) {/*…*/}

 Kolejność bloków catch ma znaczenie przy rozpoznawaniu wyjątków.

DOPASOWYWANIE WYJĄTKÓW

 Rozważmy przykład:
try

{

throw E;

}

catch (H)

{

// kiedy się tutaj znajdziemy?

}

1) H jest tego samego typu co E;

2) H jest jednoznaczną publiczną klasą bazową dla E;

3) H i E są wskaźnikami, a dla typów na które wskazują zachodzi 1) lub 2);

4) H jest referencją, a dla typu do którego się odnosi zachodzi 1) lub 2).

5) H jest obiektem stałym, a dla typu do którego się odnosi zachodzi 1) lub 2).

ZŁAPANIE KAŻDEGO WYJĄTKU

 Można wyłapać każdy wyjątek blokiem
catch(...).

 Blok catch(...) może wystąpić tylko jako
ostatni blok.

 W bloku catch(...) nie jest znany typ wyjątku.

 W bloku catch można powtórnie zgłosić ten sam
wyjątek który właśnie został wyłapany instrukcją
throw bez argumentów.

 Zgłoszenie innego wyjątku w bloku catch można
traktować jak podmianę wyjątku (można zmienić
nie tylko wartość ale i typ zgłaszanego wyjątku).

ZAGNIEŻDŻANIE
INSTRUKCJI TRY-CATCH

 Instrukcję try-catch można umieścić w bloku try – wtedy
niewyłapane wyjątki w wewnętrznej instrukcji try-catch
będą zgłoszeniem wyjątku w zewnętrznym bloku try.

 Instrukcję try-catch można również umieścić w bloku
catch – wtedy niewyłapane wyjątki w wewnętrznej instrukcji
try-catch będą traktowane jak zgłoszenie wyjątku w
zewnętrznym bloku catch.

IMPLEMENTACJA MECHANIZMU ZGŁASZANIA I
ŁAPANIA WYJĄTKÓW

 Odwikłanie stosu – wielkie sprzątanie.

 Po zgłoszeniu instrukcją throw obiekt wyjątku jest
umieszczany w pamięci globalnej w specjalnie do tego
przeznaczonym miejscu.

 Wyjątek uznaje się za obsłużony w momencie jego wyłapania
przez jakiś blok catch, ale dopiero przy wyjściu z tego bloku
wyjątek jest likwidowany.

 Nie wolno rzucać wyjątków, gdy inny wyjątek jest w trakcie
lotu.

WYJĄTKI W KONSTRUKTORACH
I W DESTRUKTORACH

 Nie wolno zgłaszać wyjątków w destruktorach, bo to
może powodować problemy przy odwikłaniu stosu.

 Gdy wyjątek zostanie zgłoszony w konstruktorze, to
obiekt nie zostanie utworzony.

 Gdy wyjątek zostanie zgłoszony w konstruktorze w
trakcie inicjalizacji części odziedziczonej lub obiektu
składowego, to zainicjalizowana część zostanie
automatycznie zlikwidowana.

 Gdy chcemy zgłosić wyjątek w ciele konstruktora, to
najpierw należy zwolnić zasoby przydzielone w ciele
konstruktora.

ZDOBYWANIE ZASOBÓW
POPRZEZ INICJALIZACJĘ

 Problem: kiedy funkcja na początku rezerwuje zasób (otwiera strumień,
przydziela pamięć, ustawia klucz kontroli dostępu, itp), to może go na
końcu nie zwolnić, gdy po drodze zostanie zgłoszony wyjątek.

 Rozwiązanie: zarządzanie zasobami poprzez opakowywanie ich klasami.

 Schemat postępowania:

 w konstruktorze klasy opakowującej zasób zostaje zarezerwowany (gdy
rezerwacja się nie powiedzie zostaje zgłoszony wyjątek);

 klasa opakowująca udostępnia narzędzia do korzystania z zasobu;

 w destruktorze klasy opakowującej zasób zostaje zwolniony (zadziała
również w przypadku zwijania stosu przy zgłoszonym wyjątku).

ZDOBYWANIE ZASOBÓW
POPRZEZ INICJALIZACJĘ

 Przykład zdobywania zasobów poprzez inicjalizację:
class plik
{

FILE *wsk;
public:

plik (const char *naz, const char *atr)
{

wsk = fopen(naz,atr);
if (!wsk) throw brak_pliku;

}
~plik () throw()

{ fclose(wsk); wsk = 0; }
operator FILE* () throw()

{ return wsk; }
};
// …
plik p(”a.txt”,”r”);
double wsp;
fscanf(p,”%lf”,&wsp);

SPRYTNE WSKAŹNIKI

 Wzorzec klasy shared_ptr wspiera technikę zdobywania zasobów
poprzez inicjalizację – jego definicja znajduje się w pliku nagłówkowym
<memory>.

 Obiekt shared_ptr jest inicjalizowany wskaźnikiem i można się nim
posługiwać w programie jak zwykłym wskaźnikiem.

 Konstruktor i przypisanie wzorca shared_ptr zapewniają niejawną
konwersję z shared_ptr<P> do shared_ptr o ile można
dokonać konwersji z P* do B*.

 Współdzielony wskaźnik shared_ptr jest wskaźnikiem ze zliczaniem
referencji.

 Współdzielony wskaźnik shared_ptr automatycznie niszczy swoją
zawartość tylko, jeśli nie ma już współdzielonych wskaźników
odnoszących się do obiektu początkowo tworzonego dla
współdzielonego wskaźnika – wtedy w destruktorze shared_ptr
zapewnione jest wywołanie operatora delete na wskazywany obiekt.

SPRYTNE WSKAŹNIKI

 Słaby wskaźnik weak_ptr jest referencją do shared_ptr, która
może określać, czy shared_ptr był kasowany czy też nie.

 Sam weak_ptr nie ma na celu zachowywania się jak zwykły wskaźnik
– po prostu jest obiektem i dostęp do faktycznego wskaźnika wymaga
stworzenia obiektu shared_ptr.

 Wskaźnik weak_ptr nie posiada tego obiektu, na którego wskazuje i
dlatego obecność weak_ptr nie zapobiega niszczenia obiektu.

 Przykład użycia auto_ptr (zakładamy, że okrąg dziedziczy po figura):
 Unikatowy wskaźnik unique_ptr jest nowym zamiennikiem starego
auto_ptr, który z kolei został oznaczony jako przestarzały i odradzany
(ang. deprecated).

 Wskaźnik unique_ptr ma wszystkie możliwości auto_ptr z
wyjątkiem niebezpiecznego niejawnego przenoszenia z l-wartości.

 W przeciwieństwie do auto_ptr, unique_ptr może być stosowany
z kontenerami uwzględniającymi przenoszenie.

SPECYFIKACJA WYJĄTKÓW

 Funkcja może wyspecyfikować zbiór wyjątków, które mogą być rzucone
w trakcie wykonania funkcji na liście kontrolnej.

 Lista kontrolna to fraza throw() na końcu nagłówka funkcji – w
nawiasie umieszczamy zbiór dopuszczalnych wyjątków.

 Przykłady list kontrolnych:
void K::f (int) const throw(ex1, ex2, ex3);

// funkcja składowa f(int) może rzucić

// wyjątkiem typu ex1, ex2 albo ex3

double g (double) throw();

// funkcja g(double) nie zgłasza żadnych

wyjątków

void h (void);

// funkcja h() może zgłosić dowolny wyjątek

SPECYFIKACJA WYJĄTKÓW

 Deklarator noexcept oznacza, że metoda nie zgłasza
żadnych wyjątków, jest to równoważne throw().

 Każdy destruktor jest domyślnie funkcją noexcept
(wszystkie inne funkcje mogą domyślnie zgłaszać każdy
wyjątek).

SPECYFIKACJA WYJĄTKÓW

 Nie jest możliwe w czasie kompilacji sprawdzenie każdego
naruszenia specyfikacji interfejsu. Jeśli funkcja z listą
kontrolną spróbuje zgłosić wyjątek spoza listy, to jest
wtedy wywoływana funkcja unexpected(), która
domyślnie wywołuje terminate().

 Można jednak dostarczyć i wywołać funkcję ratującą,
ustawiając uchwyt _unexpected_handler za
pomocą set_unexpected() – funkcja ratująca typu
void(*)() może na przykład zgłosić wyjątek
bad_exception (wyjątek ten trzeba wtedy dopisać do
listy kontrolnej) albo wywołać funkcję exit().

SPECYFIKACJA WYJĄTKÓW

 Funkcję wirtualną można nadpisać tylko funkcją, której specyfikacja
wyjątków na liście kontrolnej jest co najmniej tak restrykcyjna jak jej
własna specyfikacja.

 Przykład nadpisywania funkcji wirtualnych:
class B
{
public:

virtual void f ();
virtual void g () throw(X,Y);
virtual void h () throw(X);

};
class P: public B
{
public:

void f () override throw(X); // ok
void g () override throw(X); // ok
// void h () override throw(X,Y);
// błąd – dodanie nowego wyjątku Y do listy

};

WYJĄTKI ORAZ NEW I DELETE

 Funkcje użyte do implementacji operatorów new i delete są zadeklarowane w
<new>. Deklaracja tych operatorów jest następująca:
void * operator new (size_t) throw(bad_alloc);
void operator delete (void *) throw();
void * operator new[] (size_t) throw(bad_alloc);
void operator delete[] (void *) throw();

 Operator new (oraz new[]) zgłasza wyjątek bad_alloc, gdy nie uda się
zarezerwować pamięci na obiekt (tablicę obiektów).

 Istnieje deklaracja obiektu, który powoduje, że operator new nie zgłasza wyjątku,
tylko przekazuje wskaźnik pusty:
struct nothrow_t {};
extern const nothrow_t nothrow;
Stworzono też specjalne wersje operatora new z parametrem nothrow_t, które
zapobiegają zgłaszaniu wyjątków:
void * operator new (size_t, const nothrow_t &)

throw();
void * operator new[] (size_t, const nothrow_t &)

throw();

WYJĄTKI ORAZ NEW I DELETE

 Przykład użycia nothrow przy alokacji pamięci:
int *p = new int[1000000];
// może zgłosić wyjątek bad_alloc
// …
// poniższy kod nie zgłosi wyjątku
if (int *q = new(nothrow) int[1000000])
{

// przydział się powiódł
}
else
{

//przydział nie powiódł się
}

 Funkcja uncaught_exception() zwraca true, gdy wyjątek
zgłoszono ale jeszcze nie wyłapano – umożliwia to specyfikowanie
różnych działań w destruktorze zależnie od tego, czy obiekt jest
niszczony normalnie, czy w ramach zwijania stosu.

BRAK PAMIĘCI I OPERATOR NEW

 Gdy operator new próbuje przydzielić pamięć a wolnej
pamięci już nie ma, to zgłasza on wyjątek bad_alloc.

 Można jednak dostarczyć i wywołać funkcję ratującą,
ustawiając uchwyt _new_handler za pomocą
set_new_handler() – funkcja ratująca typu
void(*)() powinna odzyskać pamięć, a jeśli się to nie
uda, to powinna zgłosić wyjątek bad_alloc.

 Gdy nie wyłapiemy wyjątku bad_alloc, to program
zakończy się wywołaniem funkcji terminate().

BRAK PAMIĘCI I OPERATOR NEW

 Przykład funkcji ratunkowej w przypadku braku pamięci:
void new_hnd ()
{

int bytes = find_mem();
if (bytes<min_alloc) throw bad_alloc;

}

 Przykład użycia funkcji ratunkowej w przypadku braku pamięci:
void (*old_hnd)() = set_new_handler(new_hnd);
try {

// …
}
catch (bad_alloc) {

// …
}
catch (...) {

set_new_handler(old_hnd);
throw;

}
set_new_handler(old_hnd);

KOŃCZENIE PROGRAMU
W KRYTYCZNYCH SYTUACJACH

 Funkcja standardowa exit(int) kończy program w łagodny sposób
(opróżnia bufory, zamyka pliki, itp).

 Funkcja standardowa abort() kończy program w drastyczny sposób
(bez kosmetyki dotyczącej buforów, plików, itp).

 Funkcja terminate(), w której jest wywoływana funkcja abort(),
jest automatycznie wywoływana w sytuacjach krytycznych takich jak:
 rzucenie wyjątku, którego nie złapał żaden blok catch;
 rzucenie wyjątku w trakcie lotu innego wyjątku;
 rzucenie wyjątku spoza listy kontrolnej.

 Za pomocą funkcji set_terminate() możemy zmienić uchwyt
_uncaught_handler ustalając własną procedurę obsługi zdarzeń
krytycznych związanych z wyjątkami. Funkcja ta podmienia uchwyt do
funkcji wywoływanej w terminate() – standardowo jest to funkcja
abort().

WYJĄTKI Z BIBLIOTEKI STANDARDOWEJ

 Hierarchia klas wyjątków standardowych:

exception

logic_error runtime_error

length_error

domain_error

out_of_range

invalid_argument

range_error

overflow_error

underflow_error

bad_alloc

bad_exception ios_base::failure

bad_typeid

bad_cast

WŁASNE WYJĄTKI

 Wyjątkiem może być dowolny obiekt, ale dobrze jest
projektować własną hierarchię klas wyjątków, która
dziedziczy po exception.

 Gdy definiujesz własny wyjątek, pamiętaj aby nie
zgłaszał on innych wyjątków w konstruktorach, w
destruktorze i w przypisaniu kopiującym.

 Gdy definiujesz własny wyjątek dziedziczący po
exception, pamiętaj aby zdefiniować w nim
konstruktor domyślny, konstruktor kopiujący,
przypisanie kopiujące, wirtualny destruktor oraz
nadpisz metodę what().

ASERCJE

 Za pomocą asercji możemy oznaczyć w programie niezmienniki, czyli
warunki, które niezależnie od wartości zmiennych muszą pozostać
prawdziwe – jeśli asercja zawiedzie, oznacza to, że popełniliśmy błąd w
algorytmie albo nastąpiła sytuacja wyjątkowa.

 Makro assert() zdefiniowane w pliku nagłówkowym <cassert> służy
do debuggowania programów.

 Użycie:
assert(wyrażenie);

 Działanie: jeśli warunek, który testuje asercja jest prawdziwy to program
nie reaguje, natomiast w przypadku gdy warunek ten jest fałszywy to na
standardowe wyjście dla błędów zostanie wypisany odpowiedni komunikat
o błędzie i program zostanie przerwany za pomocą funkcji abort().

 Aby pozbyć się asercji, uwalniając kod od spowalniających obciążeń,
wystarczy przed dołączeniem pliku nagłówkowego <cassert>
zdefiniować makro NDEBUG – nie trzeba wówczas kasować żadnych
wystąpień makra assert().

ASERCJE STATYCZNE

 Starszy standard C++ posiada dwie metody do testowania asercji:
makro assert i dyrektywę preprocesora #error, jednak żaden z
nich nie jest odpowiedni do używania w szablonach (makro testuje
asercje w czasie wykonywania kodu, a dyrektywa preprocesora
testuje w fazie preprocesorowej, czyli przed tworzeniem instancji
szablonów).

 Można testować asercje również w czasie kompilacji przy użyciu
słowa kluczowego static_assert:
static_assert(stałe_wyrażenie, komunikat_błędu);

 Kiedy stałe_wyrażenie jest fałszywe, wtedy kompilator zgłasza
komunikat_błędu.

 Statyczne asercje są przydatne także poza szablonami;
przykładowo, jakaś szczególna implementacja algorytmu mogłaby
zależeć od tego, aby rozmiar long był większy niż rozmiar int,
czyli tego, czego standard nie zapewnia.

