KURS JEZYKA C++
— WYKtAD 8 (18.04.2018)
O

‘ Konwersje




SPIS TRESCI

o Tradycyjne operatory rzutowania

o Konstruktory konwertujgce

o Operatory konwers;ji

O Rzutowanie static cast

O Rzutowanie const cast

O Rzutowanie reinterpret cast

O Rzutowanie dynamic cast

o RTTI —operator typeid ()

o Automatyczne okreslanie typu (auto)

o Wydobycie typu wyrazenia (decltype)




RZUTOWANIE

o Rzutowanie to zmiana typu danej (powstaje nowy obiekt
innego typu) albo zmiana interpretacji danych (obiekt sie
nie zmienia ale traktujemy go w kategoriach innego
typu).

o W C++ w stosunku do C zostata zaostrzona kontrola
typow — na przyktad, gdy przekazemy funkcji zmienng o
innym typie dostaniemy btad od kompilatora (gtéwna

zmiana dotyczy wskaznikow rzutowanych na typ void~*
i w druga strone).




TRADYCYJINE
OPERATORY RZUTOWANIA

o Tradycyjne operatory rzutowania jawnie przeksztatcaja
typ danych.

o Tradycyjne operatory konwersji mogga przyjmowac dwie
formy:
(typ) wyrazenie
typ(wyrazenie)
Przyktady:
(int)3.1415926 // forma rzutowania
double (7*11+5) // forma konstruktorowa

o Operacja jawnej konwersji typow jest niebezpieczna i
nalezy jg stosowac bardzo ostroznie (tylko w razie
koniecznosci).

o Zaleca sie uzywac konstruktorowej formy przy ‘
rzutowaniu tradycyjnym.




TRADYCYJINE
OPERATORY RZUTOWANIA

o Kompilator umie przeksztatcac na siebie wszystkie typy
podstawowe.

o Operator rzutowania eliminuje ostrzezenia kompilatora
przy przeksztatcaniu typow podstawowych.

o Kompilator nie bedzie generowat ostrzezen w przypadku
konwersji na typach podstawowych, w ktorych mamy do
czynienia z promocja (konwersje niejawne).

O Przyktady:
const double e = 2.71828182845904523;
int x = (int)e; // wymagana konwersja
double y = 2*x+1; // konwersja niejawna




KONSTRUKTORY KONWERTUJACE

o Konstruktor konwertujgcy to konstruktor bez deklaratora
explicit, ktdry mozna wywotac z jednym
parametrem:

K::K (typ x) {/*..*/} // typ!=K

o Konstruktorow konwertujgcych moze byc¢ wiele w jednej
klasie.

o Deklarator explicit zabrania uzywac konstruktora
konwertujgcego niejawnie.




KONSTRUKTORY KONWERTUJACE

o Przyktad konstruktora konwertujgcego i jego niejawnego uzycia:

class zespolona {
double re, 1im;

public:
zespolona (double r=0, double 1=0);
/..
b
/..
zespolona aj;
zespolona b = zespolona(l.2); // jawna konwersja
zespolona ¢ = 3.4; // niejawna konwersja
zespolona d = (zespolona)5.6; // rzutowanie
zespolona e = static cast<zespolona>(7.8);
zespolona £(9.0, 0.9);




OPERATORY KONWERSJ!I

o Operator konwersji ma nastepujgcg postac:
operator typ ()

o Operator konwersji ma pustg liste argumentow i nie ma
okreslonego typu wyniku (typ wyniku jest okreslony poprzez
nazwe tego operatora).

o Operator konwersji musi by¢ funkcjg sktadowa w klasie.
o Operator konwersji jest dziedziczony.

o Operator konwersji moze by¢ wirtualny.

o Operatorow konwersji moze by¢ wiele w jednej klasie.

o Przy operatorach konwersji mozna uzy¢ stowa kluczowego
explicit aby unikngc¢ konwersji niejawne;.




OPERATOR STATIC CAST

O Rzutowanie static cast dziata tak jak rzutowanie tradycyjne —
jesli jest zdefiniowana operacja rzutowania to zostanie ona
wykonana.

o Operator rzutowania static cast ma nastepujacg postac:
static cast<typ>(wyrazenie)

O Rzutowania static cast uzywa sie do:
* konwersji podstawowych typow liczbowych,
* wyliczenia do typu catkowitego,

» konwersji typodw pokrewnych (zmiana typu wskaznikowego czy
referencyjnego w tej samej hierarchii klas — rzutowanie do gory albo w
dét hierarchii dziedziczenia),

* konwersji zdefiniowanych przez uzytkownika.

kompilaciji.

o Operator rzutowania static cast dziata na etapie kompilacji za
pomocg dostepnych operatorow konwers;ji.

o Typ obiektu na ktory rzutujemy musi by¢ znany w momencie ‘




RZUTOWANIE CONST CAST

o Rzutowanie to pozwala dodac albo zlikwidowac deklarator
const lubvolatile w typie wyrazenia (ale nie pozwala

zmienic typu gtéwnego).
o Operator rzutowania const cast ma nastepujgca postac:

const cast<typ>(wyrazenie)

przy czym typ powinno by¢ wskaznikiem, referencjg lub

wskaznikiem do sktadowe,;.

o Operator rzutowania const cast dziata na etapie
kompilacji.




RZUTOWANIE REINTERPRET CAST

O Operator rzutowania reinterpret cast ma nastgpujgcy
postac:
reinterpret cast<typ>(wyrazenie)
przy czym typ powinno by¢ wskaznikiem, referencjg lub
typem porzgdkowym (znaki, liczby catkowite, typ boolowski,
wykliczenia).

o Rzutowanie to ma zmienic interpretacje typu wyrazenia
(kompilator nie sprawdza sensu tego rzutowania).

O Operator rzutowania reinterpret cast tworzy wartosc
nowego typu, ktory ma ten sam wzorzec bitowy co podane
wyrazenie.

o Rzutowanie to nie gwarantuje przenosnosci.

O Operator rzutowania reinterpret cast dziata naetapie
kompilacii.




RZUTOWANIE DYNAMIC CAST

O Operator rzutowania dynamic cast ma nastepujacy
postac:
dynamic cast<typ>(wyrazenie)
przy czym wyrazenie powinno by¢ wskaznikiem lub
referencjg do typu polimorficznego.

o Rzutowanie to wykonuje sie w trakcie dziatania programu.

o0 dynamic cast<T*> (p) zwraca wskaznik typu T* gdy
obiekt wskazywany przez p jest typu T lub ma unikatowa
klase bazowg typu T (w przeciwnym przypadku zwraca
nullptr).

odynamic cast<Té&> (r) zwraca referencje typu T&
gdy obiekt wskazywany przez r jest typu T lub ma
unikatowa klase bazowg typu T (w przeciwnym przypar‘
rzuca wyjatek bad cast).




RTTI

o Operator typeid () zwraca referencje do obiektu
opisujgcego typ wyrazenia w nawiasach (mozna tez
podac nazwe typu).

o Klasa type info zdefiniowanaw <typeinfo>
stuzy do opisu typu danych lub wyrazen.

o W klasie type info sgzdefiniowane operatory
== | != do porownywania informacji o typie.

o W klasie type info jest zdefiniowana metoda
name () dostarczajgca nazwe typu w postaci

const char . ‘




AUTOMATYCZNE OKRESLANIE TYPU

o W definicji zmiennej z jawnym inicjowaniem mozna uzy¢ stowa
kluczowego auto — mozna w ten sposodb utworzy¢ zmienng o
typie takim, jak typ inicjujgcego wyrazenia.

o Przyktad 1:
auto jakasZmienna = L"To jest tekst";
Typ jakasZmienna jest programiscie tatwiej napisac stowo
auto nizconst wchar t * (takijakdla literatu
tekstowego).

o Przyktad 2:
auto 1nnazZmienna =
boost::bind (&Funkcja, 2, 1, Obiekt);
Typem innaZmienna moze by¢ cokolwiek zwracanego przez
pewng funkcje szablonowg pod boost: :bind dla danych
argumentow, typ ten jest tatwy do okreslenia przez kompilator,
natomiast dla uzytkownika jest to trudne.




AUTOMATYCZNE OKRESLANIE TYPU

o Prztktad 3:

Typ auto jest przydatny przy ograniczaniu rozwlektosci kodu.
Zamiast pisac:

for (vector<int>::const 1terator itr =

myvec.begin(); itr != myvec.end(); ++itr)
Programista moze uzyc krotszego zapisu:
for (auto i1itr = myvec.begin(); 1itr !=

myvec.end (),; ++itr)




WYDOBYCIE TYPU WYRAZENIA

o Operator decltype pozwala na uzyskanie typu wyrazenia.

o Jego gtownym przeznaczeniem tego operatora jest
programowanie uogolnione, w ktérym czesto trudno, jesli w
ogole jest to mozliwe, okresli¢ typy zalezne od parametrow
szablonu.

o Typ okreslony za pomocg operatora decltype zgadza sie z
typem obiektu lub funkcji zadeklarowanym w kodzie
zrodtowym.

o Podobnie jak w przypadku operatora sizeof, operand
decltype nie jest wykonywany.




WYDOBYCIE TYPU WYRAZENIA

O Przyktady:
const 1inté& fool();

int 1;

struct A { double x; };

const A *a = new A();

decltype (i) x2; // typ to int

decltype (foo()) x1 = 1i; // typ to const inté&

decltype (a->x) x3; // typ to double

decltype ((a->x)) x4; // typ to const doubleé&
Wyrazenie w nawiasie (a—>x) nie jest ani id-wyrazeniem ani
dostepem do cztonkdw klasy, a stagd nie oznacza nazwanego obiektu.
Poniewaz to wyrazenie jest |-wartoscig, jego wydedukowany typ jest
referencjg do typu wyrazenia, czyli const doubles. ‘




