
KURS JĘZYKA C++
– WYKŁAD 8 (18.04.2018)

Konwersje



SPIS TREŚCI

 Tradycyjne operatory rzutowania

 Konstruktory konwertujące

 Operatory konwersji

 Rzutowanie static_cast

 Rzutowanie const_cast

 Rzutowanie reinterpret_cast

 Rzutowanie dynamic_cast

 RTTI – operator typeid()

 Automatyczne określanie typu (auto)

 Wydobycie typu wyrażenia (decltype)



RZUTOWANIE

 Rzutowanie to zmiana typu danej (powstaje nowy obiekt 
innego typu) albo zmiana interpretacji danych (obiekt się 
nie zmienia ale traktujemy go w kategoriach innego 
typu).

 W C++ w stosunku do C została zaostrzona kontrola 
typów – na przykład, gdy przekażemy funkcji zmienną o 
innym typie dostaniemy błąd od kompilatora (główna 
zmiana dotyczy wskaźników rzutowanych na typ void*
i w drugą stronę). 



TRADYCYJNE

OPERATORY RZUTOWANIA

 Tradycyjne operatory rzutowania jawnie przekształcają 
typ danych.

 Tradycyjne operatory konwersji mogą przyjmować dwie 
formy:
(typ)wyrażenie
typ(wyrażenie)
Przykłady:
(int)3.1415926 // forma rzutowania
double(7*11+5) // forma konstruktorowa

 Operacja jawnej konwersji typów jest niebezpieczna i 
należy ją stosować bardzo ostrożnie (tylko w razie 
konieczności).

 Zaleca się używać konstruktorowej formy przy 
rzutowaniu tradycyjnym.



TRADYCYJNE

OPERATORY RZUTOWANIA

 Kompilator umie przekształcać na siebie wszystkie typy 
podstawowe.

 Operator rzutowania eliminuje ostrzeżenia kompilatora 
przy przekształcaniu typów podstawowych.

 Kompilator nie będzie generował ostrzeżeń w przypadku 
konwersji na typach podstawowych, w których mamy do 
czynienia z promocją (konwersje niejawne).

 Przykłady:
const double e = 2.71828182845904523;
int x = (int)e; // wymagana konwersja
double y = 2*x+1; // konwersja niejawna



KONSTRUKTORY KONWERTUJĄCE

 Konstruktor konwertujący to konstruktor bez deklaratora 
explicit, który można wywołać z jednym 
parametrem:
K::K (typ x) {/*…*/} // typ!=K

 Konstruktorów konwertujących może być wiele w jednej 
klasie.

 Deklarator explicit zabrania używać konstruktora 
konwertującego niejawnie.



KONSTRUKTORY KONWERTUJĄCE

 Przykład konstruktora konwertującego i jego niejawnego użycia:

class zespolona {
double re, im;

public:
zespolona (double r=0, double i=0);
// …

};
// …
zespolona a;
zespolona b = zespolona(1.2); // jawna konwersja
zespolona c = 3.4; // niejawna konwersja
zespolona d = (zespolona)5.6; // rzutowanie
zespolona e = static_cast<zespolona>(7.8);
zespolona f(9.0, 0.9);



OPERATORY KONWERSJI

 Operator konwersji ma następującą postać:
operator typ ();

 Operator konwersji ma pustą listę argumentów i nie ma 
określonego typu wyniku (typ wyniku jest określony poprzez 
nazwę tego operatora).

 Operator konwersji musi być funkcją składową w klasie.

 Operator konwersji jest dziedziczony.

 Operator konwersji może być wirtualny.

 Operatorów konwersji może być wiele w jednej klasie.

 Przy operatorach konwersji można użyć słowa kluczowego 
explicit aby uniknąć konwersji niejawnej.



OPERATOR STATIC_CAST

 Rzutowanie static_cast działa tak jak rzutowanie tradycyjne –
jeśli jest zdefiniowana operacja rzutowania to zostanie ona 
wykonana.

 Operator rzutowania static_cast ma następującą postać:
static_cast<typ>(wyrażenie)

 Rzutowania static_cast używa się do:
 konwersji podstawowych typów liczbowych,

 wyliczenia do typu całkowitego, 

 konwersji typów pokrewnych (zmiana typu wskaźnikowego czy 
referencyjnego w tej samej hierarchii klas – rzutowanie do góry albo w 
dół hierarchii dziedziczenia), 

 konwersji zdefiniowanych przez użytkownika.

 Typ obiektu na który rzutujemy musi być znany w momencie 
kompilacji.

 Operator rzutowania static_cast działa na etapie kompilacji za 
pomocą dostępnych operatorów konwersji.



RZUTOWANIE CONST_CAST

 Rzutowanie to pozwala dodać albo zlikwidować deklarator
const lub volatile w typie wyrażenia (ale nie pozwala 
zmienić typu głównego).

 Operator rzutowania const_cast ma następującą postać:
const_cast<typ>(wyrażenie)

przy czym typ powinno być wskaźnikiem, referencją lub 
wskaźnikiem do składowej. 

 Operator rzutowania const_cast działa na etapie 
kompilacji.



RZUTOWANIE REINTERPRET_CAST

 Operator rzutowania reinterpret_cast ma następującą 
postać:
reinterpret_cast<typ>(wyrażenie)

przy czym typ powinno być wskaźnikiem, referencją lub 
typem porządkowym (znaki, liczby całkowite, typ boolowski, 
wykliczenia).

 Rzutowanie to ma zmienić interpretację typu wyrażenia 
(kompilator nie sprawdza sensu tego rzutowania).

 Operator rzutowania reinterpret_cast tworzy wartość 
nowego typu, który ma ten sam wzorzec bitowy co podane 
wyrażenie.

 Rzutowanie to nie gwarantuje przenośności.

 Operator rzutowania reinterpret_cast działa na etapie 
kompilacji.



RZUTOWANIE DYNAMIC_CAST

 Operator rzutowania dynamic_cast ma następującą 
postać:
dynamic_cast<typ>(wyrażenie)
przy czym wyrażenie powinno być wskaźnikiem lub 
referencją do typu polimorficznego.

 Rzutowanie to wykonuje się w trakcie działania programu.
 dynamic_cast<T*>(p) zwraca wskaźnik typu T* gdy 

obiekt wskazywany przez p jest typu T lub ma unikatową 
klasę bazową typu T (w przeciwnym przypadku zwraca 
nullptr).

 dynamic_cast<T&>(r) zwraca referencję typu T&
gdy obiekt wskazywany przez r jest typu T lub ma 
unikatową klasę bazową typu T (w przeciwnym przypadku 
rzuca wyjątek bad_cast).



RTTI

 Operator typeid() zwraca referencję do obiektu 
opisującego typ wyrażenia w nawiasach (można też 
podać nazwę typu).

 Klasa type_info zdefiniowana w <typeinfo>
służy do opisu typu danych lub wyrażeń.

 W klasie type_info są zdefiniowane operatory 
== i != do porównywania informacji o typie.

 W klasie type_info jest zdefiniowana metoda 
name() dostarczająca nazwę typu w postaci 
const char *.



AUTOMATYCZNE OKREŚLANIE TYPU

 W definicji zmiennej z jawnym inicjowaniem można użyć słowa 
kluczowego auto – można w ten sposób utworzyć zmienną o 
typie takim, jak typ inicjującego wyrażenia.

 Przykład 1:
auto jakasZmienna = L"To jest tekst";
Typ jakasZmienna jest programiście łatwiej napisać słowo 
auto niż const wchar_t * (taki jak dla literału 
tekstowego).

 Przykład 2:
auto innaZmienna = 

boost::bind(&Funkcja, _2, _1, Obiekt);
Typem innaZmienna może być cokolwiek zwracanego przez 
pewną funkcję szablonową pod boost::bind dla danych 
argumentów, typ ten jest łatwy do określenia przez kompilator, 
natomiast dla użytkownika jest to trudne. 



AUTOMATYCZNE OKREŚLANIE TYPU

 Prztkład 3:
Typ auto jest przydatny przy ograniczaniu rozwlekłości kodu.
Zamiast pisać:
for (vector<int>::const_iterator itr = 

myvec.begin(); itr != myvec.end(); ++itr) …

Programista może użyć krótszego zapisu:
for (auto itr = myvec.begin(); itr != 

myvec.end(); ++itr) …



WYDOBYCIE TYPU WYRAŻENIA

 Operator decltype pozwala na uzyskanie typu wyrażenia. 

 Jego głównym przeznaczeniem tego operatora jest 
programowanie uogólnione, w którym często trudno, jeśli w 
ogóle jest to możliwe, określić typy zależne od parametrów 
szablonu.

 Typ określony za pomocą operatora decltype zgadza się z 
typem obiektu lub funkcji zadeklarowanym w kodzie 
źródłowym. 

 Podobnie jak w przypadku operatora sizeof, operand 
decltype nie jest wykonywany.



WYDOBYCIE TYPU WYRAŻENIA

 Przykłady:
const int& foo();

int i;

struct A { double x; };

const A *a = new A();

decltype(i) x2; // typ to int

decltype(foo()) x1 = i; // typ to const int&

decltype(a->x) x3; // typ to double

decltype((a->x)) x4; // typ to const double&

Wyrażenie w nawiasie (a->x) nie jest ani id-wyrażeniem ani 
dostępem do członków klasy, a stąd nie oznacza nazwanego obiektu. 
Ponieważ to wyrażenie jest l-wartością, jego wydedukowany typ jest 
referencją do typu wyrażenia, czyli const double&.


