KURS JEZYKA C++
— WYKtAD 9 (25.04.2018)
O

‘ Szablony
O

SPIS TRESC]

o Szablony w programowaniu

o Definicja szablonu

o Parametry w szablonie

o Konkretyzowanie szablonu

O Przecigzanie szablonow funkcji

o Dopasowanie i generowanie funkcji szablonowych

o Szablony funkgji z biblioteki standardowej

o Uzycie argumentow wzorca do specyfikowania strategii
o Domyslne parametry szablonu

o Specjalizacja szablondow klas ‘

SZABLONY

o Szablon (inaczej wzorzec) to przezroczysta dla programu
konstrukcja jezykowa, na podstawie ktorej kompilator jest w
stanie wygenerowac zbior podobnych funkcji lub podobnych
klas.

o Szablon zastepuje w programowaniu zmudne operacje
kopiowania, wklejania i drobne modyfikacji kodu.

o Szablony s3 sparametryzowane przede wszystkim za pomoca
typow (ale takze pewnych wartosci).

o Prawie wszystkie klasy i funkcje z biblioteki standardowej s3
szablonami.

SZABLONY

o Szablony bezposrednio wspomagajg programowanie
uogolnione, czyli programowanie z uzyciem typow jako
parametrow.

O Za pomocg szablondw mozna tatwo reprezentowac i tgczyc ze
sobg ogdlne koncepcje programistyczne (algorytmy oraz
struktury danych).

o Szablon zalezy tylko od tych wtasciwosci typow swoich
parametrow, ktorych rzeczywiscie uzywa.

o Argumentami szablonéw moga byc¢ i czesto sg typy
wbudowane.

o Kompozycje sktadane z szablondw s3 bezpieczne pod
wzgledem typodw, ale niestety wymagan szablonu co do jeg
argumentow nie da sie prosto i bezposrednio wyrazi¢ w
kodzie.

SZABLONY

o Mozemy definiowac szablony funkcji i szablony klas.

o Szablony definiuje sie umieszczajgc przed definicjg funkcji
lub klasy fraze template z listg parametrow w
nawiasach katowych.

o Przyktad:
template <typename T>
T maksimum (const T &a, const T &b)

{
}

Na podstawie tej definicji kompilator umie wygenerowac
funkcje maksimum () dla obiektéw réznych typow (dla
ktorych zdefiniowano operator porownywania
operator<).

return a<b ? b : a;

OKRESLENIE TYPU TYPENAME

o Stowo t ypename wskazuje, ze nastepujgcy po nim
identyfikator jest nazwa typu.

o Przyktad:
template <typename T>
class MyClass {
typename T::SubType *ptr;
// ..
}i
W przyktadzie tym ptr jest wskaznikiem na obiekt
typu T: : SubType (a nie iloczynem sktadowe;
statycznej T : : SubType przez ptr).

PARAMETRY SZABLONU

o0 Parametr szablonu moze by¢:
* typem (oznacza sie go jako class lub typename),

» wartoscig porzagdkowga (moze to byc char, int itp., oraz
wskaznik),

e wartoscig wczesniejszego typu bedgcego parametrem
szablonu.
o Szablon moze miec wiele parametréow.

o Przyktady:
template <class T, 1nt rozm>
class Bufor {..};
template <class T, T wart>
class Schowek {..};

DEFINIOWANIE SZABLONU

o Szablon definiuje sie w pliku nagtéwkowym, gdyz
kompilator musi znac jego definicje, aby na jej
podstawie wygenerowac funkcje lub klase szablonowa.

o Szablon funkcji lub klasy moze sie pojawiac¢ wielokrotnie
w pliku (poprzez wtaczenie pliku nagtdwkowego) i nie
spowoduje btedu (tak jak definicja funkcji wbudowanej).

DEFINIOWANIE SZABLONU

o Sktadowe szablonu klasy definiuje sie tak samo jak dla
zwyktej kasy.

o Funkcje sktadowe szablonu mozna definiowac poza klasa
(ale tak by kompilator widziat te definicje).

o Sktadowe szablonu klasy same sg szablonami i sg
sparametryzowane parametrami swoich szablonéw klas.

DEFINIOWANIE SZABLONU

Przyktad szablonu klasy:

template <typename T, int rozm>
class stos {
T tab[rozm];

int ile;
public:
void wstaw (const T &x) throw(std::out of range);
T zdejmij () throw(std::out of range);
int rozmiar () const { return ile; }

}i
template <typename T, int rozm>
vold stos::wstaw (const T &x) throw(std::out of range) {
1f (ile>=rozm) throw std::out of range (”"przepeinienie stosu”);

tab[ile++] = x;

}

template <typename T, int rozm>

T stos::zdejmij () throw(std::out of range) { ‘
1f (1le<=0) throw std::out of range (”"wyczerpanie stosu”);

return tab[--ile];

KONKRETYZOWANIE SZABLONU

o

o

Funkcja szablonowa to funkcja wygenerowana przez kompilator na
podstawie szablonu funkc;ji.

Kompilator wygeneruje funkcje szablonowg, gdy napotka jej wywotanie
lub pobranie adresu funkgji.

Kompilator sprecyzuje typ funkcji szablonowej na podstawie jej
argumentow wywotania (typ rezultatu jest nieistotny).

Mozna tez jawnie wskazac typ funkcji szablonowe;.

Przyktady:
maksimum(x,192); // x jest typu int
maksimum<double>(2.72,x); // x jest typu int
char (*fun) (const charé&, const charé&)

= maksimum;
maksimum(x,’'x’); // btad - maksimum(int, char);

"

SZABLON FUNKCII

o Parametrem szablonu funkcji jest przede wszystkim
nazwa typu (wartosci zwykle przekazuje sie jako
argumenty do funkgcji).

o Kompilator wygeneruje funkcje szablonowg, gdy
napotka jej wywotanie albo gdy w programie uzywamy
adresu takiej funkciji.

o W szablonie funkcji moze wystgpic¢ deklarator inline.

DOPASOWANIE | GENEROWANIE FUNKCII
SZABLONOWYCH

o Dopasowanie funkcji do szablonu nastepuje poprzez typy argumentow
wywotania funkcji (typ rezultatu nie ma znaczenia).

o Jawng specyfikacje stosuje sie czesto w odniesieniu do typu wyniku.
Przyktad:
template <class T, class U>
T impl cast (U u)
{ return u; }

volid fun (int 1)
{
impl cast(i); // btad - nieznane T
impl cast<double>(i); // T to double
impl cast<char,double>(i); // ok
impl cast<char*,int>(i); // blad - rzutowanie
a // int na char*

PRZECIAZANIE SZABLONU FUNKCII

o Szablon funkcji mozna przecigzac (podobnie jak sama
funkcje).

o Mozna zadeklarowac kilka szablonow funkcji o takiej samej
nazwie, a takze kombinacje szablonow i zwyktych funkgiji.

O Reguty rozstrzygania przecigzenia w obecnosci szablonow
funkcji sg uogolnieniem zwyktych regut rozstrzygania
przecigzenia funkcji:

e najpierw dla kazdego szablonu znajduje sie specjalizacje, ktora jest
najlepsza dla ciggu argumentow funkcji;

* nastepnie stosuje sie do tych specjalizacji i wszystkich zwyktych
funkcji normalne reguty rozstrzygania przecigzenia.

UZYCIE ARGUMENTOW SZABLONU
DO SPECYFIKOWANIA STRATEGII

o Problem: sortowanie tancuchow wzgledem réznych kryteriow
porownywania.

o Rozwigzanie:

template <class T, class C>

int porownaj (const Napis<T> &a, const Napis<T> &b)
for (int i=0; i<a.len()&&i<b.len(); i++)

if (!C::eg(ali]l,bl[i]))
return C::1t(a[1],b[1])?-1:1;

return a.len() - b.len();

}

template <class T>

class por { public:
static bool eq (T a, T b) { return a==b; }
static bool 1t (T a, T b) { return a<b; }

b

volid f (Napis<char> x, Napis<char> y) {
porownaj<char, por<char>>(x,vV);

{

DOMYSLNE PARAMETRY SZABLONU

o Szablon moze miec parametry domysine (podobnie jak

funkcja moze mie¢ argumenty domysine). Przyktad:
template <typename T, typename C=por<T>>

int porownaj (const Napis<T> &a, const Napis<T> &b) {..}

o Technika dostarczania strategii jako argumentu wzorca jest
powszechnie wykorzystywana w bibliotece standardowe;j.

o Parametry wzorca stuzgce do dostarczania strategii nazywa
sie trejtami (ang. traits). Przyktadami trejtow sg iteratory i
alokatory.

SZABLONY KLAS

o Przyktad szablonu klasy:
template <typename T>
class schowek {

T tajne;
public:
schowek (const T &t) : tajne(t) {}
schowek & operator= (const schowek s)
{
1f (&s!=this) tajne = s.tajne;
return *this; }
T wartosc () { return tajne; }

I
o Przyktady klas szablonowych:
schowek<int> pon(3), wto(7);

schowek<char> sro(’s’); ‘
schowek<string> czw(”czwartek”);

SZABLONY KLAS

o Szablon klasy a klasy szablonowe.

o Parametry formalne szablonu (te w nawiasach
katowych) a parametry aktualne (konkretny typ dla klasy
szablonowej).

o Nazwa szablonu klasy musi by¢ unikalna.

o Szablon klasy musi miec zasieg globalny — nie wolno
zagniezdzac definicji jednego szablonu w drugim.

SZABLONY KLAS

o Uwaga na sktadniki statyczne w szablonie.
o Instrukcje typedef i enum w szablonie klasy.
o Przyjazn a szablony klas...

* przyjaciel ogdlny

» przyjaciel szablonowy

e zaprzyjaznione operatory we/wy

o Dziedziczenie a szablony klas...

SPECJALIZACIJA SZABLONOW KLAS

o Alternatywne definicje wzorca nazywa sie
specjalizacjami.
o Przyktad:
template <class T>
class Wektor {..};
template <class T>
class Wektor<T*> {..};
template <const char *>
class Wektor<const char*> {..};
template <>
class Wektor<void*> {..};

SPECJALIZACIJA SZABLONOW KLAS

o Tworzgac specjalizacje szablonu jakiejs klasy, mozemy w
niej zdefiniowac inne pola i metody niz w szablonie
0ogollnym.

o Majac wzorzec klasy, mozna w nim wyspecjalizowac
tylko wybrane funkcje sktadowe, zamiast tworzy¢
specjalizacje catej klasy.

o W rozstrzyganiu przecigzenia preferuje sie wersje
najbardziej specjalizowana.

ALIASY SZABLONOW

o Mozliwe jest definiowanie aliasow dla szablondw, nawet
z niezdefiniowanymi parametrami szablonowymi.

O Przyktad:
template <typename first,
typename second, 1int third>
class SomeType;
template <typename second>
using TypedefName =
someType<OtherType, second, 5>;

