
laboratorium: zadanie 9 termin: 7–10 maja 2018 r.

język programowania C++
drzewo BST

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

BST to drzewo poszukiwań binarnych, czyli dynamiczna struktura danych przechowująca
zbiór wartości pochodzących z jakiegoś uniwersum z porządkiem liniowym. W drzewie BST lewe
poddrzewo każdego węzła zawiera wyłącznie elementy o kluczach mniejszych niż klucz węzła
a prawe poddrzewo zawiera wyłącznie elementy o kluczach większych niż klucz węzła. Każdy
węzeł, oprócz klucza, przechowuje jeszcze wskaźniki na swojego lewego i prawego syna (oraz w
niektórych implementacjach na swojego ojca).

Zadanie.
Zdefiniuj szablon klasy dla drzewa BST. Klasa szablonowa bst<T> ma reprezentować drzewo

binarnych poszukiwań zbudowane na węzłach typu node<T>. W drzewie BST można przecho-
wywać obiekty tylko takiego typu T, który zagwarantuje możliwość porównywania elementów w
sensowny sposób (relacja porównywania ≤ dla obiektów typu T musi być zwrotna, przechodnia
i antysymetryczna).
Sama klasa bst<T> reprezentująca drzewo BST ma być napisana zgodnie ze sztuką programo-

wania dynamicznych struktur danych — w pełni funkcjonalny węzeł drzewa node<T> zdefiniuj
jako prywatną klasę zagnieżdżoną w opakowaniu bst<T>, posiadającym wygodny dla progra-
misty interfejs z operacjami słownikowymi (wstawianie, usuwanie i wyszukiwanie elementów)
realizowanymi przez drzewo BST. Obiekty drzew BST mają być kopiowalne (konstruktor i przy-
pisanie kopiujące i przenoszące). Uzupełnij definicje klasy drzewa BST o inicjalizację za pomoca
listy wartości initializer list<T>. Nie zapomnij o operatorze strumieniowym do wypisania
zawartości drzewa metodą in–order.
Co do szablonu to powinien on posiadać dwa parametry: typ danych przechowywanych w

drzewie oraz trejta implementującego operację porównywania elementów wybranego typu. Trejt
ma być parametrem domyślnym w szablonie ustawionym na obiekt zawierający operację trady-
cyjnego porównywania za pomocą operatora ≤. Ale zdefiniuj też innego trejta implementującego
porówywanie za pomocą ≥. Zadbaj również o specjalizację dla wskaźników a w szczególności dla
wskaźnika typu const char*.
Na koniec napisz interaktywny program testujący działanie drzewa BST (interpretuj i wy-

konuj polecenia wydawane z klawiatury). Obiekt drzewa, który będziesz testować utwórz na
stercie operatorem new i nie zapomnij zlikwidować go operatorem delete przed zakończeniem
programu!

Uzupełnienie.
Definicję klasy dla drzewa BST umieść w przestrzeni nazw struktury.

1



Elementy w programie, na które należy zwrócić szczególną uwagę.

• Podział programu na pliki nagłówkowe i źródłowe.

• Definicja szablonu klasy dla drzewa BST.

• Zagnieżdżona definicja węzła.

• Definicja trejta realizującego porównania.

• Realizacja specjalizacji ogólnie dla wskaźników i w szczególności dla const char*.

• Implementacja kopiowania i przenoszenia.

• Inicjalizacja za pomocą listy wartości.

• Destrukcja całego drzewa.

• W funkcji main() należy przetestować całą słownikową funkcjonalność drzewa BST.

2


