
KURS JĘZYKA C++
– WYKŁAD 4 (26.03.2019)

Przeciążanie operatorów

SPIS TREŚCI

 Funkcje zaprzyjaźnione

Przeciążanie operatorów

Operatory składowe w klasie

 Zaprzyjaźnione funkcje operatorowe

Operatory predefiniowane

Niestatyczne operatory składowe

Operatory new i delete

Operatory strumieniowe << i >>

FUNKCJE ZAPRZYJAŹNIONE

 Problem z kwiatkami w domu w czasie dalekiej podróży
służbowej.

 Funkcja, która jest przyjacielem klasy, ma dostęp do wszystkich
jej prywatnych i chronionych składowych.

 To klasa deklaruje, które funkcje są jej przyjaciółmi.

 Deklaracja przyjaźni może się pojawić w dowolnej sekcji i jest
poprzedzona słowem kluczowym friend.

FUNKCJE ZAPRZYJAŹNIONE

 Przykład klasy z funkcją zaprzyjaźnioną:

// klasa z funkcją zaprzyjaźnioną

class pionek

{

int x, y;

// …

friend void raport (const pionek &p);

};

// funkcja, która jest przyjacielem klasy

void raport (const pionek &p)

{

cout << "(" << p.x << ", " << p.y << ")";

}

FUNKCJE ZAPRZYJAŹNIONE

 Nie ma znaczenia, w której sekcji (prywatnej, chronionej
czy publicznej) pojawi się deklaracja przyjaźni.

 Funkcja zaprzyjaźniona z klasą nie jest jej składową, nie
może używać wskaźnika this w stosunku do obiektów
tej klasy.

 Jedna funkcja może się przyjaźnić z kilkoma klasami.

 Istotą przyjaźni jest dostęp do niepublicznych składowych
w klasie – sensowne jest deklarowanie przyjaźni, gdy
dana funkcja pracuje z obiektami tej klasy.

FUNKCJE ZAPRZYJAŹNIONE

 Można także umieścić w klasie nie tylko deklarację
funkcji zaprzyjaźnionej, ale również jej definicję; tak
zdefiniowana funkcja:

 jest nadal tylko przyjacielem klasy;

 jest inline;

 może korzystać z typów zdefiniowanych w klasie.

 Funkcją zaprzyjaźnioną może być funkcja składowa z
innej klasy.

KLASY ZAPRZYJAŹNIONE

 Możemy w klasie zadeklarować przyjaźń z inną klasą, co
oznacza, że każda metoda tej innej klasy jest
zaprzyjaźniona z klasą pierwotną.

 Przykład:
class A

{

friend class B;

// …

};

 Przyjaźń jest jednostronna.

 Przyjaźń nie jest przechodnia.

 Przyjaźni się nie dziedziczy.

KLASY ZAPRZYJAŹNIONE

 Dwie klasy mogą się przyjaźnić z wzajemnością:

class A;

class B;

class B {

friend class A;

// …

};

class A {

friend class B;

// …

};

PO CO PRZECIĄŻAĆ OPERATORY?

 Porównaj dwa wyrażenia:
y = a*x+b;

y = dodaj(pomnoz(a,x),b);

 A teraz wyobraź sobie funkcyjny zapis takiego wyrażenia:
y = (a*c-b*d)/(a*a+b*b);

 Operatory tylko upraszczają notację wyrażeń.

PRZYKŁAD

PRZECIĄŻENIA OPERATORA

 Przykład klasy pamiętającej liczbę zespoloną,dla której przeciążymy operator
dodawania:
class comp

{

public:

const double re, im;

public:

comp (double r=0, double i=0) : re(r), im(i) {}

comp (const comp &c) : re(c.re), im(c.im) {}

};

 Przykład operatora dodawania dla obiektów z liczbami zespolonymi:
comp operator + (comp a, comp b)

{

return comp(a.re+b.re,a.im+b.im);

}

 Przykład użycia operatora dodawania liczb zespolonych:
comp a(2), b(3,5), c = a + b;

OGÓLNE ZASADY PRZECIĄŻANIA OPERATORÓW

 Można tylko przeciążać operatory, nie wolno definiować
nowych.

 Przy przeciążaniu operatora nie można zmienić jego
priorytetu, arności ani łączności.

 Co najmniej jeden z argumentów przeciążanego
operatora musi się odnosić do klasy (nie wolno zmieniać
znaczenia operatorów w stosunku do typów
podstawowych).

 Nie wolno używać argumentów domyślnych w
operatorach.

PRZECIĄŻANIE OPERATORÓW

 Nazwa funkcji operatorowej to operator @, gdzie @ to
symbol (nazwa) operatora.

 Można deklarować funkcje definiujące znaczenie
następujących operatorów:
+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>=
= ~ ! < > <= >= == != ,
&& || ++ -- -> ->* [] ()
new new[] delete delete[]

 Można definiować zarówno operatory dwuargumentowe
jak i jednoargumentowe (prefiksowe i postfiksowe).

PRZECIĄŻANIE OPERATORÓW

 Nie można definiować następujących operatorów:
?: (operator warunkowy)
:: (rezolucja zasięgu)
. (wybór składowej)
.* (wybór składowej za pomocą wskaźnika do składowej)

 Nie można też przeciążyć operatora, który podaje rozmiar
obiektu sizeof oraz operatora rozmieszczenia danych w
pamięci alignof.

 Nie wolno przeciążać operatorów rzutowania:
static_cast, dynamic_cast, const_cast i
reinterpret_cast.

 Nie wolno definiować operatorów # i ##, które są
poleceniami dla prekompilatora.

ZAPRZYJAŹNIONE

FUNKCJE OPERATOROWE

 Bardzo często funkcje operatorowe sięgają do ukrytych składowych w
klasie – wtedy wygodnie jest zadeklarować w klasie przyjaźń z takim
operatorem.

 Przykład:
class comp {

friend comp operator + (comp a, comp b);

double re, im;

public:

comp (double r=0, double i=0) : re(r), im(i) {}

// …

};

comp operator + (comp a, comp b) {

return comp(a.re+b.re, a.im+b.im);

}

OPERATORY SKŁADOWE W KLASIE

 Można zdefiniować operator jako funkcję składową w klasie – wtedy
pierwszym niejawnym argumentem będzie obiekt tej klasy.

 Przykład:
class comp {

double re, im;
public:

comp (double r=0, double i=0) : re(r), im(i) {}
// …
comp operator- (comp b);
comp operator- ();

};
comp comp::operator- (comp b) {

return comp(re-b.re, im-b.im);
}
comp comp::operator- () {

return comp(-re, -im);
}

SYMBOLICZNE I FUNKCYJNE

WYWOŁANIE FUNKCJI OPERATOROWEJ

 Niech dana będzie funkcja operatorowa operator@.
Wtedy możemy ją wywołać na dwa sposoby:
x @ y // wywołanie symboliczne
operator@(x, y) // wywołanie funkcyjne

 Niech dana będzie składowa funkcja operatorowa
operator @. Wtedy możemy ją wywołać na dwa sposoby:
x @ y // wywołanie symboliczne
x.operator@(y) // wywołanie funkcyjne

OPERATORY PREDEFINIOWANE

 Jest kilka operatorów, których znaczenie jest tak intuicyjne, że
są one automatycznie wygenerowane dla każdej klasy:
 przypisanie =,

 jednoargumentowy operator pobrania adresu &,

 separacja kolejnych wyrażeń ,(przecinek),

 tworzenie i usuwanie obiektów new, new[], delete,
delete[].

 Można zdefiniować własne wersje wymienionych operatorów,
jeśli chcemy zmienić ich domyślne zachowanie.

NIESTATYCZNE OPERATORY SKŁADOWE

 Istnieją cztery operatory, które muszą być niestatycznymi
operatorami składowymi:
przypisanie =,
indeksowanie [],
wywołanie funkcji (),
odwołanie do składowej ->.

OPERATOR PRZYPISANIA =

 Jeśli nie zdefiniujemy przypisania kopiującego, to wygeneruje go kompilator (o ile
nie ma w naszej klasie pól stałych).

 Postać operatora przypisania kopiującego:
K & K::operator= (K &k) {/*…*/}
K & K::operator= (const K &k) {/*…*/}

 Domyślny operator przypisania kopiującego kopiuje składnik po składniku. Ale
czasami takie kopiowanie nie jest dobre!

 Operator przypisania można przeciążać.
 Cechy prawidłowo napisanego operatora przypisania:

 nie zmienia stanu wzorca, z którego kopiuje;
 sprawdza, czy nie kopiuje sam na siebie;
 likwiduje bieżące zasoby (podobnie do destruktora);
 tworzy nowy stan obiektu na podobieństwo wzorca (podobnie jak konstruktor kopiujący).

 Przykład:
K & K::operator= (const K &k)
{

if (&k==this) return *this;
this->~K();
// kopiowanie stanu z obiektu k
return *this;

}

OPERATOR INDEKSOWANIA []

 Operator odwołania do tablicy można zaadoptować do
odwoływania się do elementów kolekcji wewnątrz obiektu.

 Aby odwołanie indeksowe mogło stać po obu stronach
operatora przypisania musimy zwracać referencję do
elementu kolekcji.

 Indeksować można dowolnym typem (niekoniecznie int).

OPERATOR WYWOŁANIA FUNKCJI ()

 Operator wywołania funkcji () może mieć dowolną
liczbę argumentów (również więcej niż dwa).

 Operator ten może mieć argumenty domniemane.
 Operator ten można przeciążać wiele razy w klasie.
 Wywołuje się go na rzecz jakiegoś obiektu. Przykład:
class K;
K a;
// …
a(); // a.operator()();
// …
a(1,2,3); // a.operator()(1,2,3);

OPERATOR WSKAZYWANIA NA SKŁADOWĄ ->

 Operator ten wywołujemy na obiekcie (a nie na wskaźniku do
danego obiektu).

 Operator ten musi zwracać albo wskaźnik albo obiekt takiej
klasy, który ma przeładowany operator ->.

 Wywołanie:
obiekt->skladowa

Interpretacja wywołania:
(obiekt.operator->())->skladowa

POSTINKREMENTACJA

I POSTDEKREMENTACJA

 Operatory ++ i -- mogą być zarówno prefiksowe jak i postfiksowe;
prefiksowe operatory ++ i -- definiuje się jako jednoargumentowe
(naturalna definicja) a postfiksowe jako dwuargumentowe:
class K
{
public:

// operatory prefiksowe
K & operator ++ ();
K & operator -- ();
// operatory postfiksowe
K operator ++ (int);
K operator -- (int);
// …

};

OPERATORY NEW I NEW[]

ORAZ DELETE I DELETE[]

 W klasie można zdefiniować własne operatory new i delete; jeśli są
one zdefiniowane to kompilator użyje właśnie ich (a nie globalnych
operatorów) do przydzielania i zwalniania pamięci.

 Definicja operatorów new i delete musi wyglądać następująco:
class K
{
public:

// operator new
static void* operator new (size_t s);
static void* operator new[] (size_t s);
// operator delete
static void operator delete (void *p);
static void operator delete[] (void *p);
// …

};

 W definicji własnych operatorów new i delete można odwoływać się
do globalnych operatorów przydzielania i zwalniania pamięci ::new i
::delete.

OPERATORY NEW I NEW[]

 Operator new ma przydzielić pamięć dla pojedynczego
obiektu a operator new[] dla tablicy obiektów.

 Operatory new i new[] muszą być statyczne w klasie.
 Operatory new i new[] zwracają jako wynik wartość typu
void*.

 Operatory new i new[] przyjmują jako argument wartość
typu size_t (w przypadku new ma to być rozmiar
jednego obiektu a w przypadku new[] rozmiar wszystkich
obiektów łącznie); argument ten jest do tych operatorów
przekazywany niejawnie (za pomocą operatora sizeof).

 Gdy zabraknie pamięci należy zgłosić wyjątek bad_alloc.

OPERATORY DELETE I DELETE[]

 Operator delete ma zwolnić pamięć dla pojedynczego obiektu
a operator delete[] dla tablicy obiektów.

 Operatory delete i delete[] muszą być statyczne w klasie.

 Operatory delete i delete[] nie zwracają wyniku (są typu
void).

 Operatory delete i delete[] przyjmują jako argument
wskaźnik typu void*.

GLOBALNE OPERATORY NEW I NEW[]

ORAZ DELETE I DELETE[]

 Można zdefiniować własne wersje globalnych operatorów
new i new[] oraz delete i delete[] ale:
 w ten sposób całkowicie niszczymy oryginalne wersje tych

operatorów;

 operator ::new jest używany w bibliotekach standardowych do
tworzenia obiektów globalnych (takich jak cin czy cout) jeszcze
przed uruchomieniem funkcji main().

 najczęściej własne definicje tych operatorów to błąd projektowy,
który może doprowadzić do katastrofy w działaniu programu…

OPERATORY NEW[] I DELETE[]

 Operator new[] przydziela pamięć dla tablicy obiektów.
Wszystkie obiekty w nowoutworzonej tablicy będą
zainicjalizowane konstruktorem domyślnym (pamiętaj o
zdefiniowaniu konstruktora domyślnego w klasie, której
obiekty będą występować w tablicach).

 Operator delete[] zwalnia pamięć przydzieloną dla
tablicy obiektów. Przed zwolnieniem tej pamięci dla
wszystkich obiektów dostanie wykonany destruktor.

OPERATORY << I >>

DO PRACY ZE STRUMIENIAMI

 Wygodnie jest zdefiniować operatory << i >> do pracy ze strumieniami;
aby można było pracować z takimi operatorami w sposób kaskadowy
powinny one być zdefiniowane jako funkcje zewnętrzne w stosunku do
klasy:
class K
{

// operator czytajacy dane ze strumienia
friend
istream& operator >>
(istream &is, K &k);
// operator piszacy dane do strumienia
friend
ostream& operator <<
(ostream &os, const K &k);
// …

};

