KURS JEZYKA C++
— WYKtAD 4 (26.03.2019)
O

‘ Przecigzanie operatorow

SPIS TRESCI

o Funkcje zaprzyjaznione

O Przecigzanie operatorow

o Operatory sktadowe w klasie

o Zaprzyjaznione funkcje operatorowe
o Operatory predefiniowane

o Niestatyczne operatory sktadowe

o Operatory newidelete

o Operatory strumieniowe << | >>

FUNKCJE ZAPRZYJAZNIONE

o Problem z kwiatkami w domu w czasie dalekiej podrozy
stuzbowe,;.

o Funkcja, ktora jest przyjacielem klasy, ma dostep do wszystkich

jej prywatnych i chronionych sktadowych.
o To klasa deklaruje, ktore funkcje sg jej przyjaciotmi.

o Deklaracja przyjazni moze sie pojawi¢ w dowolnej sekcji i jest

poprzedzona stowem kluczowym friend.

FUNKCJE ZAPRZYJAZNIONE

o Przyktad klasy z funkcjg zaprzyjazniona:

// klasa z funkcja zaprzyjazniona
class pionek

{

int x, vy;

// ..

friend void raport (const pionek &p);
I
// funkcja, ktdéra jest przyjacielem klasy
vold raport (const pionek &p)

{

") "

cout << " (" << p.x << ", " <K< p.y <<
}

FUNKCJE ZAPRZYJAZNIONE

o Nie ma znaczenia, w ktorej sekcji (prywatnej, chronionej
czy publicznej) pojawi sie deklaracja przyjazni.

o Funkcja zaprzyjazniona z klasg nie jest jej sktadowag, nie
moze uzywac wskaznika this w stosunku do obiektow
tej klasy.

o Jedna funkcja moze sie przyjaznic¢ z kilkoma klasami.

O Istotg przyjazni jest dostep do niepublicznych sktadowych
w klasie — sensowne jest deklarowanie przyjazni, gdy
dana funkcja pracuje z obiektami tej klasy.

FUNKCJE ZAPRZYJAZNIONE

o Mozna takze umiesci¢ w klasie nie tylko deklaracje
funkcji zaprzyjaznionej, ale rowniez jej definicje; tak
zdefiniowana funkcja:

» jest nadal tylko przyjacielem klasy;
» jestinline;
* moze korzystac z typow zdefiniowanych w klasie.

o Funkcjg zaprzyjazniong moze byc¢ funkcja sktadowa z
innej klasy.

KLASY ZAPRZYJAZNIONE

o Mozemy w klasie zadeklarowac przyjazn z inng klasg, co
oznacza, ze kazda metoda tej innej klasy jest
zaprzyjazniona z klasg pierwotna.

o Przyktad:
class A

{

friend class BR;

// ..
b
O Przyjazn jest jednostronna.
o Przyjazn nie jest przechodnia.

o Przyjazni sie nie dziedziczy.

KLASY ZAPRZYJAZNIONE
o Dwie klasy mogg sie przyjazni¢ z wzajemnoscia:

class A;
class B;

class B {
friend class A;

/..
} s
class A {
friend class B;

[/ ..

b s

PO CO PRZECIAZAC OPERATORY?

e Pordwnaj dwa wyrazenia:
Yy = a*x+b;
y = dodaj (pomnoz(a,x),b);

e A teraz wyobraz sobie funkcyjny zapis takiego wyrazenia:
y = (a*c-b*d)/ (a*atb*b);

e Operatory tylko upraszczajg notacje wyrazen.

PRZYKLAD
PRZECIAZENIA OPERATORA

e Przyktad klasy pamietajacej liczbe zespolong,dla ktérej przecigzymy operator
dodawania:
class comp

{

public:
const double re, im;

public:
comp (double r=0, double 1i=0) : re(r), im(i) {}
comp (const comp &c) : re(c.re), im(c.im) {}

b7
e Przyktad operatora dodawania dla obiektow z liczbami zespolonymi:
comp operator + (comp a, comp b)

{

return comp(a.retb.re,a.imt+b.1im);

}

e Przyktad uzycia operatora dodawania liczb zespolonych: ‘
comp a(2), b(3,5), c¢c = a + b;

OGOLNE ZASADY PRZECIAZANIA OPERATOROW

e Mozna tylko przecigzac operatory, nie wolno definiowac
nowych.

e Przy przecigzaniu operatora nie mozna zmienic jego
priorytetu, arnosci ani fgcznosci.

e Co najmniej jeden z argumentow przecigzanego
operatora musi sie odnosic¢ do klasy (nie wolno zmienia¢

znaczenia operatorow w stosunku do typow
podstawowych).

e Nie wolno uzywac¢ argumentow domysinych w

operatorach. ‘

PRZECIAZANIE OPERATOROW

e Nazwa funkcji operatorowej to operator @, gdzie @ to
symbol (nazwa) operatora.

e Mozna deklarowac funkcje definiujgce znaczenie

nastepujacych operatorow:
+ - * /%5 N &] <LK >>

4= —= *= /: S= N= — |: <<= >>=
= ~ | < > <= = == |= ,
& ||+t == => =>* [] ()

new new|] delete delete]]

e Mozna definiowac zarowno operatory dwuargumentowe
jak i jednoargumentowe (prefiksowe i postfiksowe).

PRZECIAZANIE OPERATOROW

e Nie mozna definiowac nastepujgcych operatorow:
?: (operator warunkowy)
(rezolucja zasiegu)
(wybor sktadowej)
. * (wybor sktadowej za pomoca wskaznika do sktadowej)

e Nie mozna tez przecigzy¢ operatora, ktory podaje rozmiar
obiektu sizeof oraz operatora rozmieszczenia danych w
pamiecialignof.

e Nie wolno przecigzac operatorow rzutowania:
static cast,dynamic cast,const casti
reinterpret cast.

e Nie wolno definiowac operatorow # i ##, ktore sg
poleceniami dla prekompilatora. ‘

/APRZYJAZNIONE
FUNKCJE OPERATOROWE

e Bardzo czesto funkcje operatorowe siegajg do ukrytych sktadowych w
klasie — wtedy wygodnie jest zadeklarowac w klasie przyjazn z takim
operatorem.

e Przyktad:

class comp {
friend comp operator + (comp a, comp b);
double re, im;

public:
comp (double r=0, double 1i=0) : re(r), im(i) {}
// ..

}i

comp operator + (comp a, comp b) {
return comp (a.ret+b.re, a.imt+b.im);

}

OPERATORY SKtADOWE W KLASIE

e Mozna zdefiniowad operator jako funkcje sktadowg w klasie — wtedy
pierwszym niejawnym argumentem bedzie obiekt tej klasy.

e Przyktad:
class comp {
double re, im;

public:
comp (double r=0, double 1=0) : re(r), im(i) {}
/..
comp operator- (comp b);
comp operator- ();
b
comp comp: :operator- (comp b) {

return comp(re-b.re, 1m-b.im);

}

comp comp::operator—- () {
return comp (-re, -1im);

}

SYMBOLICZNE | FUNKCYJNE
WYWOLtANIE FUNKCJI OPERATOROWE]J

e Niech dana bedzie funkcja operatorowa operator@.
Wtedy mozemy jg wywotac na dwa sposoby:
x @ vy // wywotanie symboliczne
operator@(x, y) // wywotanie funkcyjne

e Niech dana bedzie sktadowa funkcja operatorowa
operator @.Wtedy mozemy jg wywotac na dwa sposoby:
x @ vy // wywotanie symboliczne
x.operator@(y) // wywotanie funkcyjne

OPERATORY PREDEFINIOWANE

e Jest kilka operatorow, ktorych znaczenie jest tak intuicyjne, ze
sg one automatycznie wygenerowane dla kazdej klasy:
e przypisanie =,
e jednoargumentowy operator pobrania adresu ¢,
e separacja kolejnych wyrazen , (przecinek),
e tworzenie i usuwanie obiektéw new, new[], delete,
delete[].

e Mozna zdefiniowac wtasne wersje wymienionych operatorow,
jesli chcemy zmienic ich domysine zachowanie.

NIESTATYCZNE OPERATORY SKtADOWE

e [stniejg cztery operatory, ktore musza by¢ niestatycznymi
operatorami sktadowymi:
przypisanie =,
indeksowanie [],
wywotanie funkcji (),
odwotanie do sktadowej —>.

OPERATOR PRZYPISANIA =

e Jesli nie zdefiniujemy przypisania kopiujgcego, to wygeneruje go kompilator (o ile
nie ma w naszej klasie pdl statych).

e Postac operatora przypisania kopiujgcego:
K & K::operator= (K &k) {/*.*/}
K & K::operator= (const K &k) {/*.*/}

e Domyslny operator przypisania kopiujgcego kopiuje sktadnik po sktadniku. Ale
czasami takie kopiowanie nie jest dobre!

Operator przypisania mozna przecigzac.

Cechy prawidtowo napisanego operatora przypisania:
e nie zmienia stanu wzorca, z ktérego kopiuje;
e sprawdza, czy nie kopiuje sam na siebie;
e likwiduje biezace zasoby (podobnie do destruktora);
e tworzy nowy stan obiektu na podobienstwo wzorca (podobnie jak konstruktor kopiujacy).
e Przykfad:
K & K::operator= (const K &k)
{
if (&k==this) return *this;
this—-—>~K () ;
// kopiowanie stanu z obiektu k

return *this;

OPERATOR INDEKSOWANIA []

e Operator odwotania do tablicy mozna zaadoptowac do
odwotywania sie do elementow kolekcji wewnatrz obiektu.

e Aby odwotanie indeksowe mogto stac¢ po obu stronach
operatora przypisania musimy zwracac referencje do
elementu kolekg;ji.

e Indeksowaé mozna dowolnym typem (niekoniecznie int).

OPERATOR WYWOANIA FUNKCJI ()

e Operator wywotania funkcji () moze mie¢ dowolng
liczbe argumentow (rowniez wiecej niz dwa).

e Operator ten moze miec¢ argumenty domniemane.
e Operator ten mozna przecigzac wiele razy w klasie.
e Wywotuje sie go na rzecz jakiegos obiektu. Przyktad:

class K;

K a;

/..

a(); // a.operator() ();
/..

a(l,2,3); // a.operator() (1,2,3);

OPERATOR WSKAZYWANIA NA SKEADOWA —>

e Operator ten wywotujemy na obiekcie (a nie na wskazniku do
danego obiektu).

e Operator ten musi zwracac albo wskaznik albo obiekt takiej
klasy, ktéry ma przetadowany operator —>.

e Wywotanie:
obiekt->skladowa
Interpretacja wywotania:
(obilekt.operator->())->skladowa

POSTINKREMENTACJA

| POSTDEKREMENTACIJA
e Operatory ++ i —— moga byc¢ zarowno prefiksowe jak i postfiksowe;
prefiksowe operatory ++ i —— definiuje sie jako jednoargumentowe

(naturalna definicja) a postfiksowe jako dwuargumentowe:
class K

{

public:
// operatory prefiksowe
K & operator ++ ();
K & operator —-- ();
// operatory postfiksowe
K operator ++ (int);
K operator -- (int);
/..

Y

OPERATORY NEW | NEW []
ORAZ DELETE | DELETE []

e W klasie mozna zdefiniowac wtasne operatory new i delete; jesli sg
one zdefiniowane to kompilator quJe wtasnie ich (a nie globalnych
operatorow) do przydzielania i zwalniania pamieci.

e Definicja operatorow new i delete musi wygladac nastepujaco:

class K

{

public:
// operator new
static void* operator new (size t s);
static void* operator new[] (size t s);
// operator delete -
static void operator delete (void *p);
i;atlc vold operator delete[] (void *p);

Y

e W definicji wtasnych operatorow new i delete mozna odwo’fywac sig
do globalnych operatoréw przydzielania i zwalniania pamieci : : new i

:delete. ‘

OPERATORY NEW | NEW []

e Operator new ma przydzieli¢ pamiec dla pojedynczego
obiektu a operator new [] dla tablicy obiektow.

e Operatory newinew[] muszg byc statyczne w klasie.

e Operatory newinew[] zwracajg jako wynik wartosc typu
voldx*.

e Operatory newinew][] przyjmuja jako argument wartosc
typu size t (w przypadku new ma to by¢ rozmiar
jednego obiektu a w przypadku new [] rozmiar wszystkich
obiektow tacznie); argument ten jest do tych operatorow
przekazywany niejawnie (za pomocg operatora sizeof).

e Gdy zabraknie pamigci nalezy zgtosi¢ wyjatek bad alloc.

OPERATORY DELETE | DELETE []

e Operator delete ma zwolni¢ pamiec dla pojedynczego obiektu
a operator delete [] dla tablicy obiektow.

e Operatory deleteidelete[] muszg by statyczne w klasie.

e Operatorydeleteidelete[] nie zwracajg wyniku (s3g typu
void).

e Operatory deleteidelete[] przyjmujgjako argument
wskaznik typu void*.

(GLOBALNE OPERATORY NEW | NEW []
ORAZ DELETE | DELETE |]

e Mozna zdefiniowac wtasne wersje globalnych operatorow
newinewl[] orazdeleteidelete|[] ale:
e W ten sposob catkowicie niszczymy oryginalne wersje tych
operatorow;

e operator : : new jest uzywany w bibliotekach standardowych do
tworzenia obiektow globalnych (takich jak cin czy cout) jeszcze
przed uruchomieniem funkcjimain ().

e najczesciej wiasne definicje tych operatorow to btad projektowy,
ktory moze doprowadzi¢ do katastrofy w dziataniu programu...

OPERATORY NEW [] | DELETE []

e Operator new [] przydziela pamiec dla tablicy obiektow.
Wszystkie obiekty w nowoutworzonej tablicy beda
zainicjalizowane konstruktorem domysinym (pamietaj o
zdefiniowaniu konstruktora domyslinego w klasie, ktorej
obiekty bedg wystepowac w tablicach).

e Operator delete[] zwalnia pamiec przydzielong dla
tablicy obiektéw. Przed zwolnieniem tej pamieci dla
wszystkich obiektow dostanie wykonany destruktor.

OPERATORY << | >>
DO PRACY ZE STRUMIENIAMI

e Wygodnie jest zdefiniowac¢ operatory << i >> do pracy ze strumieniami;
aby mozna byto pracowac z takimi operatorami w sposob kaskadowy
powinny one byc¢ zdefiniowane jako funkcje zewnetrzne w stosunku do
klasy:
class K
{

// operator czytajacy dane ze strumienia
friend
istream& operator >>
(istream &is, K &k);
// operator piszacy dane do strumienia
friend
ostreamé& operator <<
(ostream &os, const K &k);
/] ..
b

