Networking

Zaawansowane technologie Javy 2019




Model klient-serwer

* W modelu klient-serwer (ang. client-server) dane
trzymane sg na serwerze, interfejs uzytkownika i
logika przetwarzania danych s3 realizowane na
kliencie.

e Zadaniem serwera jest przetwarzanie i
analizowanie danych przed odestaniem ich do

klienta.

* Przyktady takich modeli: FTP, WWW.

* Przeciwienstwem tego modelu jest model
rownorzedny (ang. peer-to-peer) takie jak gry
sieciowe, system telefoniczny, itp.




Gniazda

* Transmitowanie danych w pakietach to bardzo
skomplikowana czynnos¢ — na szczescie berkeleyowkie
gniazda pozwalajg traktowac potgczenie sieciowe jak
strumien.

* Gniazdo obstuguje potaczenie miedzy dwoma hostami w
sieci:

taczy sie ze zdalng maszyng,

wysyta dane,

odbiera dane,

zamyka potfgczenie,

a takze taczy sie z portem, czeka na dane i odbiera potgczenie o

zdalnej maszyny na porcie granicznym.

* Klasa Socket jest wykorzystywana przez klienty i serwery
— posiada metody pozwalajgce wykonywac pierwsze cztery
Z wymienionych operacji. Y




Klasa Socket

* Socket to podstawowa klasa do wykonywania operacji
TCP po stronie klienta.

* W czasie konstrukcji obiektu klasy Socket od razu jest
nawigzywane potgczenie:
Socket (String host, int port) throws
UnknownHostException, IOException
Socket (InetAddress host, 1nt port)
throws IOException

* Na koncu pracy z gniazdem nalezy zamkngac potaczenie:
socket.close ()




Klasa Socket

* Obiekt klasy Socket posiada kilka metod
udostepniajacych informacje o gniezdzie:
getInetAddress ()
getPort ()
getLocalPort ()
1sClosed ()




e

Komunikacja z hostem za pomoca
obiektu Socket

e Komunikacja z hostem jest realizowana za pomocg zwyktych strumieni
bajtowych, do ktérych dostep uzyskuje sie za pomocg metod:
getInputStream/()
getOutputStream ()

e Zwykle strumienie te s3 opakowywane:
Socket s = new Socket(..);
BufferedReader 1in = new BufferedReader (
new InputStreamReader (s.getInputStream())):
PrintWriter out = new PrintWriter (
new OutputStreamWriter (s.getOutputStream()))




Komunikacja z hostem za pomoca
obiektu Socket

* Metoda close () gniazda zamyka automatycznie
jego strumienie do komunikacji.

* Gdy jeden ze strumieni do komunikacji zostanie
zamkniety, cate gniazdo jest zamykane.

e Gdy w czasie pracy z gniazdem chcemy zamknac¢
tylko strumien do czytania lub pisania nalezy uzy¢
jednej z metod:
shutdownInput ()
shutdownOutput ()




Opcje gniazda Socket

* Opcje gniazda okreslajg, w jaki sposodb gniazda wysytajg i
odbierajg dane:
e TCP NODELAY —wartos¢ t rue wytgcza schemat buforowania;
* SO LINGER - okresla, co nalezy zrobic z datagramami, ktore nie
zostaty wystane przed zamknieciem gniazda;

e SO TIMEOUT — wartos¢ wyrazona w milisekundach powoduje, ze
gniazdo nie zablokuje sie na dtuzej w trakcie czytania (zgtaszany jest
wyjatek InterruptedException ale gniazdo nie jest
zamykane);

e SO KEEPALIVE —wartos$¢ true wtacza system kontrolowania
bezczynnych potaczen (raz na dwie godziny).




Serwer

* Piszac serwer zawsze trzeba opracowac protokot
rozmowy z klientami.

* Cykl zyciowy serwera:
® serwer zajmuje port;
e w petli: serwer czeka na klienta, prowadzi z nim
rozmowe a na konicu zamyka potgczenie z klientem;

e serwer zwalnia port po zakonczonej pracy.




Klasa ServerSocket

* Gniazdo serwera zajmuje lokalny port i czeka na
nadchodz3ace potaczenia TCP.

* W czasie konstrukcji obiektu klasy
ServerSocket od razu jest zajmowany lokalny
port:

ServerSocket (int port)
throws IOException

ServerSocket (i1nt port, 1nt gqueue)
throws IOException




Klasa ServerSocket

Przyjmowanie i zamykanie potaczen:
ServerSocket server =

new ServerSocket (4444);
Socket s = server.accept():
// rozmowa z klientem
s.close () ;

Dostep do strumieni za pomocg gniazda roboczego:

OutputStream os =
s.getOutputStream() ;

InputStream 1s =
s.getInputStream() ;




Klasa ServerSocket

* Obiekt klasy ServerSocket posiada kilka
metod udostepniajgcych informacje o gniezdzie:
getInetAddress ()
getLocalPort ()

* Opcje gniazd serwera:
SO TIMEOUT - wartos¢ wyrazona w
milisekundach okresla czas akceptacji nowego
potfgczenia (wartosc¢ 0 oznacza brak limitu).




Program telnet

Przyktad wystania listu z konsoli:

prz@sunflower:~$ telnet swiatowit 25
Trying 192.168.3.1...

Connected to swiatowit.prac.ii.

Escape character is '"7]'.

220 swiatowit.ii.uni.wroc.pl ESMTP Postfix
HELO neo.edu.pl

250 swiatowit.ii.uni.wroc.pl

MATIL FROM: stirlitz

250 2.1.0 Ok.

RCPT TO: prz(@ii.uni.wroc.pl

250 2.1.5 Ok.

DATA

354 End data with <CR><LF>.<CR><LF>

to jest mail testowy wystany z konsoli ;)

250 2.0.0 Ok: queued as COE/E351Al1
QUIT

221 2.0.0 Bye

Connection closed by foreign host.
prz@sunflower:~$



mailto:prz@ii.uni.wroc.pl

Program telnet

» Aby przetestowac dziatanie réznych protokotow z
wykorzystaniem gniazd mozna wykorzystac program
telnet.

* Telnet taczy sie ze wskazanym serwerem, czeka na
polecenia uzytkownika i zwraca odpowiedzi od serwera.

* Domyslnie telnet taczy sie z portem 23, ale mozna mu
wskaza¢ dowolny port. Przyktad:
% telnet localhost 25

* Aby skorzystac z programu telnet i porozmawiac z
serwerem jakies ustugi nalezy poznac podstawowe
elementy danego protokotu.

* Mozna wykorzystac program telnet do udawania klienta
(testowanie wtasnych serwerow).




Bezpieczne gniazda

* Istnieje mozliwosc¢ szyfrowania danych przesytanych
przez sie¢ za pomoca gniazd uzywajgc protokotu SSL
(ang. Secure Sockets Layer).

* Rozszerzenie zwyktych gniazd o szyfrowanie jest
dostepne w pakiecie javax.net.ssl w postaci
klas SSLSocket i SSLServerSocket.




KlasaMulticastSocket

e Konstruktory:
MulticastSocket ()
MulticastSocket (int port)

* Podstawowe metody:
volid joinGroup (InetAddress 1a)
vold leaveGroup (InetAddress 1a)
vold setTimeTolLive (int ttl)
int getTimeToLive ()




Protokot UDP
w poréwnaniu z TCP

* Implementacja UDP w Javie sktada sie z dwdch klas:

e klasa DatagramPacket pozwala umiesci¢ albo odzyskac dane z
pakietow UDP (czyli z datagramow);

e klasa DatagramSocket wysyta i odbiera datagramy UDP.

* W UDP nie istnieje pojecia gniazda serwera — uzywa sie
takich samych gniazd do wysytania i odbierania
datagtamow.

e W UDP nie pracuje sie ze strumieniami — zawsze operuje
na paczkach z danymi.

* Gnizado UDP nie jest zwigzane z zadnym konkretnym
hostem — moze wysytac i odbiera¢ dane od wielu
niezaleznych hostow.




Klasa DatagramPacket

» Teoretycznie w datagramie UDP mozna zmiescic
do 65507 bajtow danych, na wielu platformach
jednak rzeczywistym ograniczeniem jest rozmiar
8192 bajtow ale naprawde bezpiecznie jest wtedy,
gdy rozmiar ten nie przekracza 512 bajtow.

e Datagram skfada sie z nagtéwka IP (minimum 20
bajtow), nagtowka UDP (8 bajtow) i bloku danych
(maksymalnie 65507).




Klasa DatagramPacket

» Konstruktory do odbierania datagramow:
DatagramPacket (bytel[] buf,
int length)
DatagramPacket (bytel[] buft,
int offset, int length)

* Przyktad:
byte[] data = new byte[8192];
DatagramPacket dp =
new DatagramPacket (data,data.length);




Klasa DatagramPacket

e Konstruktory do wysytania datagramow:
DatagramPacket (byte[] buf,
int length,

InetAddress dest, 1nt port)
DatagramPacket (byte[] buf,
int offset, int length,

InetAddress dest, 1nt port)

* Przyktfad:
byte[] data = new byte[8192];
InetAddress 1a = InetAddress.getByName ("..");

int port = 7;
DatagramPacket dp =
new DatagramPacket (data,data.length, i1a,port);




Klasa DatagramPacket

* Klasa DatagramPacket zawiera kilka metod do odczytywania
informacji z datagramow:
InetAddress getAddress ()
int getPort ()
byte[] getbata ()
int getlLength ()
int getOffset ()

* Przyktfad:
DatagramPacket dp = ..;
// ..

String s = new String(dp.getData(),"utf-8");

// ...
ByteArrayInputStream bis =
new ByteArrayInputStream (
dp.getData () ,dp.getOffset () ,dp.getLength ()

DatalInputStream dis = new DatalnputStream(bi

/




Klasa DatagramPacket

e Klasa DatagramPacket zawiera kilka metod do wpisywania danych
do datagramoéw oraz wprowadzania zmian w nagtowku:
vold setAddress (InetAddress 1a)
vold setPort (int port)
volid setData (bytel[] buf)
void setData (byte[] buf, int off, int len)
void setlLength (int len)

* Przyktfad:
byte[] data = new byte[8192];
DatagramPacket dp = ..;
/ /...

dp.setData (data) ;
// ..




Klasa DatagramSocket

* Wszystkie gniazda datagramowe sg powigzane z lokalnym
portem.

o Jesli piszesz serwer, klienty muszg wiedzie¢, na ktorym
porcie serwer czeka na przychodzace datagramy; wtedy
uzywasz konstruktora:

DatagramSocket (i1nt port)

o Jesli piszesz klienta, mozesz uzyc portu anonimowego;
wtedy uzywasz konstruktora:
DatagramSocket ()

* Aby odczyta¢ numer portu zajetego przez gniazdo UDP
nalezy sie postuzy¢ metodg getLocalPort ().

* Aby zwolnic¢ zajety port UDP nalezy zamknac¢ gniazdo
metodg close ().




Klasa DatagramSocket

* Po skonstruowaniu datagramu mozna go wystac
metodg send:
DatagramPacket dp -
DatagramSocket ds -
ds.send (dp) ;

* Metoda receive pozwala odczytac datagram
(blokada biezgcego watku az do otrzymania
datagramu) i po odczycie umieszcza dane w
obiekcie datagramu:

DatagramPacket dp -
DatagramSocket ds s
ds.receive (dp) ;




Klasa DatagramSocket

* Potfgczeniami UDP mozna zarzgdzac za pomocga nastepujgcych metod:
e void connect (InetAddress host, int port)
okresla wybrany host i port z ktéorym bedzie sie komunikowa¢ gniazdo UDP;
e void disconnect ()
Znosi ograniczenia natozone przez metode connect;

e int getPort ()
zwraca numer portu, do ktérego gniazdo jest podtgczone (albo —-1);
* TnetAddress getInetAddress ()
zwraca adres hosta, do ktérego gniazdo jest podtgczone (albo null).
* Opcje gniazd serwera:
SO TIMEOUT - wartos¢ wyrazona w milisekundach okresla czas
akceptacji nowego potaczenia (wartos¢ 0 oznacza brak limitu).




Multicasting

» Unicasting zapewnia komunikacje miedzy dwoma
punktami w sieci.

e Multicasting to transmisja grupowa realizowana przez
dodatkowe protokoty warstwy aplikacji opierajgce sie
na TCP albo UDP.

* Broadcasting to komunikacja rozgtoszeniowa.




Multicasting

e Multicasting zaprojektowano z myslg o niewidocznym
wpasowaniu go w strukture Internetu — wiekszos¢
pracy wykonujg rutery, programisci nie powinni miec z
nim stycznosci.

e Rutery gwarantujg, ze pakiet zostanie dostarczony
wszystkim hostom w grupie multicast.




Multicasting

* Przy multicastingu w nagtowku datagramu
znajduje sie dodatkowe pole TTL (ang. Time-To-
Live), ktore okresla maksymalng liczbe ruterow,
przez ktore moze przejsc pakiet.

* Adresy multicast to adresy IP z zakresu 224.0.0.0 —
239.255.255.255 (klasa D).

e Adres 224.0.0.1 jest zarezerwowany dla grupy
multicast w sieci lokalnej




Multicasting

» Kiedy host chce przesta¢ dane do grupy multicast,
umieszcza je w zwyktych datagramach UDP
adresowanych do grupy multicast.

e Dane rozsytane za pomocg multicastingu to przede
wszystkim obraz lub dzwiek.




KlasaMulticastSocket

e KlasaMulticastSocket odpowiada za obstuge
multicastingu w Javie.

e GniazdoMulticastSocket zachowuje sie
podobnie do DatagramSocket, czyliwysytfai

odbiera dane za pomoca obiektow
DatagramPacket.




KlasaMulticastSocket

e Konstruktory:
MulticastSocket ()
MulticastSocket (int port)

* Podstawowe metody:
volid joinGroup (InetAddress 1a)
vold leaveGroup (InetAddress 1a)
vold setTimeTolLive (int ttl)
int getTimeToLive ()




KlasaMulticastSocket

* Odczytywanie pakietow przeznaczonych dla grupy:

MulticastSocket ms = new MulticastSocket (2468) ;

InetAddress 1a =
InetAddress.getByName ("224.0.0.1");
byte[] buf = new byte[8192];
DatagramPacket dp =
new DatagramPacket (buf,buf.length);
ms.joinGroup(ia) ;
while (true) {
ms.receive (dp) ;
String s =
new String(dp.getbata(),"utf-8");
// ...




KlasaMulticastSocket

e Wysytanie pakietow do grupy:

byte[] buf = "dane multicast\r\n".getBytes();
InetAddress 1a =

InetAddress.getByName ("experiment.mc.net") ;
int port = 2468;
DatagramPacket dp =

new DatagramPacket (buf,buf.length,ia,port);
MulticastSocket ms = new MulticastSocket ()
ms.send (dp) ;

/7.




Literatura

* E.R.Harold: Java. Programowanie sieciowe.
Wydawnictwo RM, Warszawa 2001.

e C.S.Horstmann, G.Cornell: Java — techniki
zaawansowane. Wydanie 9. Rozdziat 3:
Programowanie aplikacji sieciowych.
Wydawnictwo HELION, Gliwice 2013.

» Custom Networking (Java Tutorial):
https://docs.oracle.com/javase/
tutorial/networking/



http://download.oracle.com/�javase/tutorial/networking/

