
Zaawansowane technologie Javy 2019

Networking



Model klient-serwer
 W modelu klient-serwer (ang. client-server) dane 

trzymane są na serwerze, interfejs użytkownika i 
logika przetwarzania danych są realizowane na 
kliencie.

 Zadaniem serwera jest przetwarzanie i 
analizowanie danych przed odesłaniem ich do 
klienta.

 Przykłady takich modeli: FTP, WWW.
 Przeciwieństwem tego modelu jest model 

równorzędny (ang. peer-to-peer) takie jak gry 
sieciowe, system telefoniczny, itp.



Gniazda

 Transmitowanie danych w pakietach to bardzo 
skomplikowana czynność – na szczęście berkeleyowkie 
gniazda pozwalają traktować połączenie sieciowe jak 
strumień.

 Gniazdo obsługuje połączenie między dwoma hostami w 
sieci:
 łączy się ze zdalną maszyną,
 wysyła dane,
 odbiera dane,
 zamyka połączenie,
 a także łączy się z portem, czeka na dane i odbiera połączenie o 

zdalnej maszyny na porcie granicznym.

 Klasa Socket jest wykorzystywana przez klienty i serwery 
– posiada metody pozwalające wykonywać pierwsze cztery 
z wymienionych operacji.



Klasa Socket

 Socket to podstawowa klasa do wykonywania operacji 
TCP po stronie klienta.

 W czasie konstrukcji obiektu klasy Socket od razu jest 
nawiązywane połączenie:
Socket (String host, int port) throws

UnknownHostException, IOException

Socket (InetAddress host, int port)

throws IOException

 Na końcu pracy z gniazdem należy zamknąć połączenie:
socket.close()



Klasa Socket
 Obiekt klasy Socket posiada kilka metod 

udostępniających informacje o gnieździe:
getInetAddress()

getPort()

getLocalPort()

isClosed()



Komunikacja z hostem za pomocą 
obiektu Socket

 Komunikacja z hostem jest realizowana za pomocą zwykłych strumieni 
bajtowych, do których dostęp uzyskuje się za pomocą metod:
getInputStream()
getOutputStream()

 Zwykle strumienie te są opakowywane:
Socket s = new Socket(…);
BufferedReader in = new BufferedReader(
new InputStreamReader(s.getInputStream()));

PrintWriter out = new PrintWriter(
new OutputStreamWriter(s.getOutputStream()));



Komunikacja z hostem za pomocą 
obiektu Socket
 Metoda close() gniazda zamyka automatycznie 

jego strumienie do komunikacji. 
 Gdy jeden ze strumieni do komunikacji zostanie 

zamknięty, całe gniazdo jest zamykane.
 Gdy w czasie pracy z gniazdem chcemy zamknąć 

tylko strumień do czytania lub pisania należy użyć 
jednej z metod:
shutdownInput()
shutdownOutput()



Opcje gniazda Socket
 Opcje gniazda określają, w jaki sposób gniazda wysyłają i 

odbierają dane:
 TCP_NODELAY – wartość true wyłącza schemat buforowania;

 SO_LINGER – określa, co należy zrobić z datagramami, które nie 
zostały wysłane przed zamknięciem gniazda;

 SO_TIMEOUT – wartość wyrażona w milisekundach powoduje, że 
gniazdo nie zablokuje się na dłużej w trakcie czytania (zgłaszany jest 
wyjątek InterruptedException ale gniazdo nie jest 
zamykane);

 SO_KEEPALIVE – wartość true włącza system kontrolowania 
bezczynnych połączeń (raz na dwie godziny). 



Serwer
 Pisząc serwer zawsze trzeba opracować protokół 

rozmowy z klientami.

 Cykl życiowy serwera:

 serwer zajmuje port;

 w pętli: serwer czeka na klienta, prowadzi z nim 
rozmowę a na końcu zamyka połączenie z klientem;

 serwer zwalnia port po zakończonej pracy. 



Klasa ServerSocket
 Gniazdo serwera zajmuje lokalny port i czeka na 

nadchodzące połączenia TCP.

 W czasie konstrukcji obiektu klasy 
ServerSocket od razu jest zajmowany lokalny 
port:
ServerSocket (int port)

throws IOException

ServerSocket (int port, int queue)

throws IOException



Klasa ServerSocket
 Przyjmowanie i zamykanie połączeń:
ServerSocket server = 

new ServerSocket(4444);

Socket s = server.accept();

// rozmowa z klientem

s.close();

 Dostęp do strumieni za pomocą gniazda roboczego:
OutputStream os = 

s.getOutputStream();

InputStream is = 

s.getInputStream();



Klasa ServerSocket

 Obiekt klasy ServerSocket posiada kilka 
metod udostępniających informacje o gnieździe:
getInetAddress()

getLocalPort()

 Opcje gniazd serwera:
SO_TIMEOUT – wartość wyrażona w 
milisekundach określa czas akceptacji nowego 
połączenia (wartość 0 oznacza brak limitu).



Program telnet

 Przykład wysłania listu z konsoli:

prz@sunflower:~$ telnet swiatowit 25
Trying 192.168.3.1...
Connected to swiatowit.prac.ii.
Escape character is '^]'.
220 swiatowit.ii.uni.wroc.pl ESMTP Postfix
HELO neo.edu.pl
250 swiatowit.ii.uni.wroc.pl
MAIL FROM: stirlitz
250 2.1.0 Ok.
RCPT TO: prz@ii.uni.wroc.pl
250 2.1.5 Ok.
DATA
354 End data with <CR><LF>.<CR><LF>
to jest mail testowy wysłany z konsoli ;)

.
250 2.0.0 Ok: queued as C0E7E351A1
QUIT
221 2.0.0 Bye
Connection closed by foreign host.
prz@sunflower:~$

mailto:prz@ii.uni.wroc.pl


Program telnet

 Aby przetestować działanie różnych protokołów z 
wykorzystaniem gniazd można wykorzystać program 
telnet.

 Telnet łączy się ze wskazanym serwerem, czeka na 
polecenia użytkownika i zwraca odpowiedzi od serwera.

 Domyślnie telnet łączy się z portem 23, ale można mu 
wskazać dowolny port. Przykład:
% telnet localhost 25

 Aby skorzystać z programu telnet i porozmawiać z 
serwerem jakieś usługi należy poznać podstawowe 
elementy danego protokołu.

 Można wykorzystać program telnet do udawania klienta 
(testowanie własnych serwerów).



Bezpieczne gniazda
 Istnieje możliwość szyfrowania danych przesyłanych 

przez sieć za pomocą gniazd używając protokołu SSL 
(ang. Secure Sockets Layer).

 Rozszerzenie zwykłych gniazd o szyfrowanie jest 
dostępne w pakiecie javax.net.ssl w postaci 
klas SSLSocket i SSLServerSocket.



Klasa MulticastSocket

 Konstruktory:
MulticastSocket ()

MulticastSocket (int port)

 Podstawowe metody:
void joinGroup (InetAddress ia)

void leaveGroup (InetAddress ia)

void setTimeToLive (int ttl)

int getTimeToLive ()



Protokół UDP
w porównaniu z TCP

 Implementacja UDP w Javie składa się z dwóch klas:
 klasa DatagramPacket pozwala umieścić albo odzyskać dane z 

pakietów UDP (czyli z datagramów);

 klasa DatagramSocket wysyła i odbiera datagramy UDP.

 W UDP nie istnieje pojęcia gniazda serwera – używa się 
takich samych gniazd do wysyłania i odbierania 
datagtamów.

 W UDP nie pracuje się ze strumieniami – zawsze operuje 
na paczkach z danymi.

 Gnizado UDP nie jest związane z żadnym konkretnym 
hostem – może wysyłać i odbierać dane od wielu 
niezależnych hostów.



Klasa DatagramPacket

 Teoretycznie w datagramie UDP można zmieścić 
do 65507 bajtów danych, na wielu platformach 
jednak rzeczywistym ograniczeniem jest rozmiar 
8192 bajtów ale naprawdę bezpiecznie jest wtedy, 
gdy rozmiar ten nie przekracza 512 bajtów.

 Datagram składa się z nagłówka IP (minimum 20 
bajtów), nagłówka UDP (8 bajtów) i bloku danych 
(maksymalnie 65507).



Klasa DatagramPacket

 Konstruktory do odbierania datagramów:
DatagramPacket (byte[] buf,

int length)

DatagramPacket (byte[] buf,

int offset, int length)

 Przykład:
byte[] data = new byte[8192];

DatagramPacket dp =

new DatagramPacket(data,data.length);



Klasa DatagramPacket

 Konstruktory do wysyłania datagramów:
DatagramPacket (byte[] buf,
int length,
InetAddress dest, int port)

DatagramPacket (byte[] buf,
int offset, int length,
InetAddress dest, int port)

 Przykład:
byte[] data = new byte[8192];
InetAddress ia = InetAddress.getByName("…");
int port = 7;
DatagramPacket dp =
new DatagramPacket(data,data.length,ia,port);



Klasa DatagramPacket

 Klasa DatagramPacket zawiera kilka metod do odczytywania 
informacji z datagramów:
InetAddress getAddress ()
int getPort ()
byte[] getData ()
int getLength ()
int getOffset ()

 Przykład:
DatagramPacket dp = …;
//…
String s = new String(dp.getData(),"utf-8");
//…
ByteArrayInputStream bis =
new ByteArrayInputStream(
dp.getData(),dp.getOffset(),dp.getLength());

DataInputStream dis = new DataInputStream(bis);



Klasa DatagramPacket
 Klasa DatagramPacket zawiera kilka metod do wpisywania danych 

do datagramów oraz wprowadzania zmian w nagłówku:
void setAddress (InetAddress ia)
void setPort (int port)
void setData (byte[] buf)
void setData (byte[] buf, int off, int len)
void setLength (int len)

 Przykład:
byte[] data = new byte[8192];
DatagramPacket dp = …;
//…
dp.setData(data);
//…



Klasa DatagramSocket

 Wszystkie gniazda datagramowe są powiązane z lokalnym 
portem.

 Jeśli piszesz serwer, klienty muszą wiedzieć, na którym 
porcie serwer czeka na przychodzące datagramy; wtedy 
używasz konstruktora:
DatagramSocket (int port)

 Jeśli piszesz klienta, możesz użyć portu anonimowego; 
wtedy używasz konstruktora:
DatagramSocket ()

 Aby odczytać numer portu zajętego przez gniazdo UDP 
należy się posłużyć metodą getLocalPort().

 Aby zwolnić zajęty port UDP należy zamknąć gniazdo 
metodą close().



Klasa DatagramSocket

 Po skonstruowaniu datagramu można go wysłać 
metodą send:
DatagramPacket dp = …;
DatagramSocket ds = …;
ds.send(dp);

 Metoda receive pozwala odczytać datagram 
(blokada bieżącego wątku aż do otrzymania 
datagramu) i po odczycie umieszcza dane w 
obiekcie datagramu:
DatagramPacket dp = …;
DatagramSocket ds = …;
ds.receive(dp);



Klasa DatagramSocket

 Połączeniami UDP można zarządzać za pomocą następujących metod:
 void connect (InetAddress host, int port)

określa wybrany host i port z którym będzie się komunikować gniazdo UDP;
 void disconnect ()

znosi ograniczenia nałożone przez metodę connect; 
 int getPort ()

zwraca numer portu, do którego gniazdo jest podłączone (albo -1); 
 InetAddress getInetAddress ()

zwraca adres hosta, do którego gniazdo jest podłączone (albo null).

 Opcje gniazd serwera:
SO_TIMEOUT – wartość wyrażona w milisekundach określa czas 
akceptacji nowego połączenia (wartość 0 oznacza brak limitu).



Multicasting
 Unicasting zapewnia komunikację między dwoma 

punktami w sieci.

 Multicasting to transmisja grupowa realizowana przez 
dodatkowe protokoły warstwy aplikacji opierające się 
na TCP albo UDP.

 Broadcasting to komunikacja rozgłoszeniowa.



Multicasting
 Multicasting zaprojektowano z myślą o niewidocznym 

wpasowaniu go w strukturę Internetu – większość 
pracy wykonują rutery, programiści nie powinni mieć z 
nim styczności.

 Rutery gwarantują, że pakiet zostanie dostarczony 
wszystkim hostom w grupie multicast.



Multicasting
 Przy multicastingu w nagłówku datagramu 

znajduje się dodatkowe pole TTL (ang. Time-To-
Live), które określa maksymalną liczbę ruterów, 
przez które może przejść pakiet.

 Adresy multicast to adresy IP z zakresu 224.0.0.0 –
239.255.255.255 (klasa D).

 Adres 224.0.0.1 jest zarezerwowany dla grupy 
multicast w sieci lokalnej



Multicasting
 Kiedy host chce przesłać dane do grupy multicast, 

umieszcza je w zwykłych datagramach UDP 
adresowanych do grupy multicast.

 Dane rozsyłane za pomocą multicastingu to przede 
wszystkim obraz lub dźwięk.



Klasa MulticastSocket
 Klasa MulticastSocket odpowiada za obsługę 

multicastingu w Javie.

 Gniazdo MulticastSocket zachowuje się 
podobnie do DatagramSocket, czyli wysyła i 
odbiera dane za pomocą obiektów 
DatagramPacket. 



Klasa MulticastSocket

 Konstruktory:
MulticastSocket ()

MulticastSocket (int port)

 Podstawowe metody:
void joinGroup (InetAddress ia)

void leaveGroup (InetAddress ia)

void setTimeToLive (int ttl)

int getTimeToLive ()



Klasa MulticastSocket
 Odczytywanie pakietów przeznaczonych dla grupy:

MulticastSocket ms = new MulticastSocket(2468);
InetAddress ia =
InetAddress.getByName("224.0.0.1");

byte[] buf = new byte[8192];
DatagramPacket dp =
new DatagramPacket(buf,buf.length);

ms.joinGroup(ia);
while (true) {

ms.receive(dp);
String s =
new String(dp.getData(),"utf-8");

//…
}



Klasa MulticastSocket
 Wysyłanie pakietów do grupy:

byte[] buf = "dane multicast\r\n".getBytes();
InetAddress ia =
InetAddress.getByName("experiment.mc.net");

int port = 2468;
DatagramPacket dp =
new DatagramPacket(buf,buf.length,ia,port);

MulticastSocket ms = new MulticastSocket();
ms.send(dp);
//…



Literatura
 E.R.Harold: Java. Programowanie sieciowe.

Wydawnictwo RM, Warszawa 2001.

 C.S.Horstmann, G.Cornell: Java – techniki 
zaawansowane. Wydanie 9. Rozdział 3: 
Programowanie aplikacji sieciowych.
Wydawnictwo HELION, Gliwice 2013.

 Custom Networking (Java Tutorial): 
https://docs.oracle.com/javase/
tutorial/networking/

http://download.oracle.com/�javase/tutorial/networking/

