C++171STL

Kolekcje

Kontenery

= Kontenery to obiekty, ktore zarzadzajg kolekcjami elementow:

= Kontenery sekwencyjne bedgace kolekcjami uporzgdkowanymi, w ktorych
kazdy element posiada okreslong pozycje. Pozycja ta zalezy od momentu
oraz miejsca wstawienia, jest jednak niezalezna od wartosci elementu.

= Kontenery asocjacyjne bedgce kolekcjami sortowanymi, w ktérych
aktualna pozycja elementu zalezy od jego wartosci (albo klucza w
przypadku kontenerdw operujgcych na parach klucz-wartosc), zgodnie z
okre$lonym kryterium sortowania.

= Kontenery nieporzadkujace to kolekcje nieporzagdkujace i
niezachowujgce pozycji elementdw, bo ich zadaniem gtéwnym jest
ustalanie, czy (a nie gdzie) element znajduje sie w kolekcji. Elementy nie
zachowujg wiec uporzadkowania ani wzgledem kolejnosci wstawiania,
ani wzgledem wartosci — jedno i drugie moze w czasie zycia kontenera
ulega¢ zmianie.

Kontenery

= Kontenery posiadajg rozne implementacje:

® kontenery sekwencyjne sg zazwyczaj implementowane jako tablice
dynamiczne albo listy;

® Lkontenery asocjacyjne sg zazwyczaj implementowane jako
zrownowazone drzewa binarnych poszukiwan (drzewa czerwono-
czarne);

® Lkontenery nieporzgdkujgce sg zazwyczaj implementowane jako
tablice z haszowaniem.

Kontenery

Kontenery sekwencyjne: Kontenery asocjacyjne: Kontenery nieporzadkujace:

Tablica: Zbior/wielozbidr: Zbior/Wielozbiér
nieporzadkujacy:

Welktor:

Kolejka dwustronna:

£

Mapa/multimapa: Mapa/Multimapa

Lista (dwukierunkowa):

nieporzadkujaca:

24 B BB R

Lista jednokierunkowa:

Cechy kontenerow

= \Wszystkie kontenery zapewniajg semantyke wartosci, a nie semantyke
referencji.

® Podczas operacji wstawiania kontenery, zamiast operowac na referencjach do
elementow, wykonujg wewnetrznie ich kopie.

® QObiekty, ktore chcemy umiesci¢ w kontenerze, powinny posiadac publiczny
konstruktor kopiujacy i publiczny operator przypisania kopiujgcego.

= \Wszystkie elementy kontenera posiadaja okreslong kolejnos¢. Kazdy typ
kontenerowy udostepnia operacje zwracajgce iteratory, stuzgce do iteracji po
elementach kolekg;ji.

= Mozemy wykonywac wielokrotnie iteracje po elementach kolekcji i bedg one
udostepniane w tej samej kolejnosci.

® Operacje na kontenerach nie sg bezpieczne, czyli nie sprawdzajg mozliwosci
wystgpienia kazdego rodzaju bteddw.

® Funkcja wywotujgca operacje na kontenerze musi zapewnic spetnienie
okreslonych wymagan przez parametry tej operacji — naruszenie tych
wymagan (na przyktad uzycie niepoprawnego indeksu) prowadzi do
niezdefiniowanego zachowania.

Cechy elementow kontenerow

® Element musi by¢ kopiowalny albo przenaszalny. Typ elementu musi
wiec niejawnie albo jawnie udostepniac konstruktor kopiujacy albo
konstruktor przenoszacy.

= Utworzona kopia powinna by¢ rwnowazna elementowi zrédtowemu.
Oznacza to, ze dowolny test rownosci powinien wykazac, ze obydwa
elementy sg réwne oraz ze zaréwno zrodto, jak i kopia zachowujg sie
identycznie.

= Element musi by¢ przypisywalny przez przypisanie kopiujace albo
przypisanie przenoszace.

= Kontenery i algorytmy wykorzystujg operatory przypisania do
nadpisywania starych elementéw nowymi.

® Element musi by¢ zniszczalny przez destruktor.

® Kontenery niszczg swoje wewnetrzne kopie elementéw, gdy elementy te
zostajg usuniete z kontenera. Destruktor nie moze wiec byc prywatny.
Destruktor nie moze réwniez zgtaszaé wyjgtkow.

Wspolne operacje na kontenerach

= Standard definiuje zestaw operacji wspolnych dla wszystkich
kontenerdw (z powodu réznorodnosci konteneréw dostepnych w
C++11 zdarzajg sie wyjatki i niektére kontenery nie spetniajg
wszystkich ogdlnych wymogow):

konstruktor domysiny,
konstruktor kopiujgcy i przypisanie kopiujace,
konstruktor przenoszacy i przypisanie przenoszgace,

(opcjonalnie) konstruktor inicjalizowany kopiami elementow z
podanego zakresu w innej kolekcji i przypisanie,

(opcjonalnie) konstruktor inicjalizowany kopiami elementow z listy
wartosci przekazanych za pomocg initializer_list<>,

destruktor publiczny, ktory usuwa wszystkie elementy kolekgji i
zwalnia pamiec (o ile to jest mozliwe),

Wspolne operacje na kontenerach

= Standard definiuje zestaw operacji wspolnych dla wszystkich
kontenerow (z powodu réznorodnosci kontenerow dostepnych w
C++11 zdarzajg sie wyjatki i niektére kontenery nie spetniaja
wszystkich ogdlnych wymogow):

® funkcja sktadowa empty(), ktdra sprawdza czy kontener jest pusty,

® (opcjonalnie) funkcja sktadowa clear(), ktéra usuwa wszystkie elementy z
kontenera,

= funkcje sktadowe size() i max_size(), ktore zwracajg odpowiednio biezgca
i maksymalng liczbe elementéw w kontenerze,

™ operatory == i |= ustalajgce odpowiednio rownos¢ i nierownosé
konteneréw,

® (opcjonalnie) operatory <, <=, > i >=, ktére ustalajg relacje miedzy
kontenerami,

® funkcja sktadowa i statyczna swap(), ktéra zamienia zawartosc
kontenerdw,

® funkcje sktadowe begin() i end() oraz cbegin() i cend(), ktore dostarczaja
iteratorow pracujgcych na kolekcji.

Inicjalizacja

= const std::vector<int>v1={1,2,3,5,7, 11, 13,17, 21 };

® std::list<int>|;

std::vector<float> c(l.begin(),l.end());

® std::list<std::string>|;

std::vector<std::string> c(
std::make_move_iterator(l.begin()),
std::make_move_iterator(l.end())

);
= ntcarray[]={2,3,17,33,45,77 };

std::set<int> c(std::begin(carray),std::end(carray));

= std::deque<int> c{
std::istream_iterator<int>(std::cin),
std::istream_iterator<int>()

I

Przypisania i zamiany

® Przypisanie kontenera oznacza skopiowanie wszystkich
elementdéw kontenera zrédtowego i jednoczesnie usuniecie
wszystkich starych elementow kontenera docelowego.

® Po przypisaniu przenoszacym kontener po lewej stronie
przypisania zawiera elementy, ktére wczesniej posiadat kontener
znajdujacy sie po prawej stronie przypisania. Zawartosc
kontenera po prawej stronie po wykonaniu operacji jest
niezdefiniowana.

® Funkcja sktadowa swap() zamienia zawartos¢ dwoéch kontenerow.
W rzeczywistosci zamianie ulegajg jedynie wewnetrzne wskazniki
na dane.

Operacje dotyczgce rozmiaru

® Funkcja empty() informuje o zerowej liczbie elementdéw
(begin()==end()). Warto jg stosowac zamiast konstrukcji
size()==0. Funkcja empty() moze by¢ zaimplementowana bardziej
wydaijnie niz size().

® Funkcja size() zwraca aktualng liczbe elementéw kontenera.
Operacji tej nie zapewnia sie dla list typu forward_list<>, gdyz nie
miafaby statej ztozonosci.

® Funkcja max_size() zwraca maksymalng liczbe elementdw, ktére
moze zawiera¢ kontener. Wartosc ta jest roznie zdefiniowana w
zaleznosci od implementacji. Funkcja max_size() zwraca zwykle
maksymalng wartos¢ reprezentowang przez typ indeksu.

Porownania

® Jesli nie liczy¢ kontenerow nieuporzagdkowanych, zwykle
operatory poréwnania ==, !=, <, <=, > oraz >= zdefiniowane sg
wedtug nastepujgcych trzech regut:

® Obydwa kontenery muszg by¢ tego samego typu.

® Dwa kontenery sg rowne, jesli ich elementy sg rowne i posiadajg te
samg kolejnosc.

= \V celu sprawdzenia, czy jeden kontener jest mniejszy od innego
kontenera, przeprowadzane jest porownanie leksykograficzne.

Dostep do elementow

= \Nszystkie kontenery udostepniajg interfejs iteratora, co umozliwia
stosowanie petli for bazujgcych na zakresach wartosci:

® for (const auto& elem : coll) {
std::cout << elem << std::endl;

}
= for (auto& elem : coll) {
elem=...;
}

® By korzysta¢ z danych o pozycjach (na przyktad by méc wstawiac,
usuwac lub przenosic¢ elementy), mozna po prostu uzyc iteratoréw
udostepnianych przez cbegin() i cend():

® for (auto pos=coll.cbegin(); pos!=coll.cend(); ++pos) {
std::cout << *pos << std::endl;
}

® for (auto pos=coll.begin(); pos!=coll.end(); ++pos) {
*pos =...;
}

Definicje typow w kontenerach

= Typ size_type jest typem catkowitym bez znaku dla wartosci
rozmiaru.

Typ value_type to typ elementdow w kontenerze.

Typ reference to typ referencji do elementu.

Typ const_ reference to typ referencji do niemodyfikowalnego
elementu.

Typ iterator to typ iteratora.
Typ const_iterator to typ iteratora, ktory nie modyfikuje kolekcji.

Typ pointer to typ wskaznika do elementu.

Typ const_pointer to typ wskaznika niemodyfikujgcego do
elementu.

Tablice

= Kontener array<> modeluje tablice statyczng — jest to otoczka dla
statycznej tablicy z jezyka C, zapewniajgca interfejs kontenera
STL.

™ Tablica to cigg elementdw o ustalonej dtugosci — nie mozna wiec
dodawac ani usuwac elementdow i w ten sposdb zmieniac jej
rozmiaru; mozliwe jest tylko i wytgcznie zastepowanie
elementéw.

%

Stata liczba elementow

Tablice

= Tablice kopiujg elementy do wtasnych wewnetrznych, statycznych tablic.

™ Tablice sg kolekcjg uporzgdkowang, poniewaz elementy tablic sg zawsze
utozone w scistej kolejnosci.

™ Tablice zapewniajg swobodny dostep do elementdéw — dostep do kazdego
elementu tablicy jest bezposredni i ma staty czas.

= Kontener array<> to jedyny, ktérego elementy s3 inicjalizowane

domysinie, jesli nic nie zostanie przekazane jawnie — oznacza to, ze dla typéw
podstawowych wartos¢ poczgtkowa moze by¢ niezdefiniowana, zamiast
otrzymac wartos¢ 0.
std::array<int, 4> x; //elementy x sq niezdefiniowane
std::array<int,4> x = {}; //wszystkie elementy x majq wartosc 0
std::array<int, 5> coll = {42, 377, 611, 21, 44};

// wskazania wartosci poczatkowych tworzonej tablicy
std::array<int, 10> c2 = {42};

// pierwszy element ma wartos¢ 42 pozostate 0

Tablice

= Kontener array<> udostepnia operacje swap() — mozna zamienic
elementy kontenera tego samego typu (taki sam typ elementow i
taka sama liczba elementéw), trzeba jednak pamietac, ze array<>
nie moze tak naprawde podmieni¢ wewnetrznych wskaznikéw (z
tego powodu swap() ma ztozonosc liniowg, a iteratory i
referencje nie zamieniajg konteneréw razem z wartosciami).

™ Poza operatorem przypisania mozliwe jest tylko uzycie operacji
fill() do przypisania nowej wartosci wszystkim elementom lub
swap() do zamiany wartosci z inng tablicg; w przypadku
operatora = lub funkcji swap() obie tablice muszg by¢ tego
samego typu.

= Kontrole zakresu robi to tylko funkcja at() — jesli indeks nie miesci
sie w zakresie, zgtasza ona wyjatek out_of _range. Pozostate
funkcje nie wykonujg tego sprawdzenia. Wywotanie operatora []
oraz funkcji front() i back() wobec pustego kontenera array<>
powoduje zawsze niezdefiniowane zachowanie.

Tablice

= Tablice zapewniajg interfejs krotki — oznacza to, ze mozna uzyc¢
wyrazen w stylu tuple_size<>::value do uzyskania liczby
elementow, tuple_element<>::type do uzyskania typu

konkretnego elementu i get() do uzyskania wartosci konkretnego
elementu.

= Oto przyktad:

typedef std::array<std::string,5> FiveStrings;

FiveStrings a = { "witaj", "janie", "jak", "sie", "masz" };
std::tuple_size<FiveStrings>::value // zwraca 5
std::tuple_element<1,FiveStrings>::type // zwraca std::string
std::get<1>(a) // zwraca std::string("janie")

Wektory

= Kontener vector<> jest modelem tablicy dynamicznej — jest on
abstrakcjg, ktorej elementy zarzagdzane s3 przy uzyciu
dynamicznej tablicy w stylu jezyka C.

® Pojemnos¢ wektordw nigdy nie sie zmniejsza, istnieje wiec
gwarancja, ze referencje, wskazniki oraz iteratory pozostang
wazne nawet w przypadku usuwania elementéw, pod warunkiem
ze odnoszg sie one do pozycji wystepujgcej przed
modyfikowanymi elementami.

el

Wektory

= \Nektory kopiujg swoje elementy do wewnetrznej tablicy
dynamicznej. Elementy te zawsze posiadajg okreslong kolejnosc.
Wektory sg wiec swego rodzaju kolekcjg uporzgdkowang.

= \NVektory umozliwiajg dostep bezposredni. Mozemy wiec
bezposrednio odwotac sie do kazdego elementu w statym czasie,
pod warunkiem ze znamy jego pozycje.

™ |teratory wektora sg iteratorami dostepu swobodnego, mozemy
wiec uzy¢ kazdego algorytmu z biblioteki STL.

= \Nektory zapewniajg dobrg wydajnos¢, jesli dotgczamy lub
usuwamy elementy na ich koncu. W przypadku wstawiania lub
usuwania elementéw w srodku lub na poczatku wektora
wydajnosé spada.

Wektor bitow

= Dla elementéw boolowskich wektora biblioteka STL udostepnia
specjalizacje kontenera vector<bool>, ktéra przeznacza
wewnetrznie zwykle tylko 1 bit na kazdy element.

= [Klasa vector<bool> jest czyms wiecej niz tylko specjalizacjg —
klasa vector<> dla typu bool udostepnia kilka specjalnych
operacji bitowych, ktdre umozliwiajg operowanie na bitach lub
znacznikach w wygodniejszy i szybszy sposdb.

Kolejki o dwoch koncach

= Kontener deque<>, czyli kolejka o dwdch koricach, jest bardzo

podobna do wektora — zarzgdza swoimi elementami,
wykorzystujgc tablice dynamiczng, zapewnia dostep swobodny
oraz posiada prawie taki sam interfejs co wektor; réznica polega
na tym, ze w przypadku kolejki deque<> tablica dynamiczna jest
otwarta z obydwu koncow.

N -

-

Kolejki o dwoch koncach

® \Nstawanie i usuwanie elementdéw jest szybkie zaréwno na
poczatku, jak i na koricu kontenera.

= [Kolejki deque<> nie oferujg mozliwosci sterowania pojemnoscia
ani momentem realokacji.

= B|oki pamieci moga zosta¢ zwolnione w przypadku, gdy nie s3 juz
wykorzystywane, tak wiec rozmiar obszaru pamieci zajmowanego
przez kolejke deque moze sie zmniejszyc.

Listy

= \V liscie list<> elementy zorganizowane sg w postaci listy
dwukierunkowe;j.

® (QObiekt listy zawiera dwa wskazniki nazywane tez
zakotwiczeniami, ktore wskazujg pierwszy i ostatni element listy.
Kazdy element zawiera wskazniki do nastepnego lub
poprzedniego elementu (lub do zakotwiczenia). Wstawienie czy
usuniecie elementu wymaga jedynie zmian odpowiednich
wskaznikow.

—} —
- - === I -———

Listy

™ |ista nie zapewnia dostepu swobodnego.
= \Vstawianie i usuwanie elementdw jest szybkie na kazdej pozycji
(o ile ma sie juz do niej dostep).

= (Operacje wstawiania i usuwania elementéw nie powodujg
uniewaznienia wskaznikow, referencji ani iteratorow do innych
elementow.

™ |isty zapewniajg funkcje front(), push_front() i pop_front(), a
takze back(), push_back() i pop_back().

Listy jednokierunkowe

® |ista jednokierunkowa forward_list<> zostata wprowadzona w C++11
do zarzadza elementami jako lista zwigzana z pojedynczymi
wskaznikami.

= Koncepcyjnie lista jednokierunkowa przypomina standardowa liste,
ale zubozong w ten sposob, iz nie jest w stanie iterowac w tyt.

= Dla wszystkich funkcji sktadowych modyfikujacych liste w taki
sposob, ze elementy sg wstawiane lub usuwane na konkretnych
pozycjach, lista jednokierunkowa oferuje ich specjalne wersje —
powad jest bardzo prosty, bo trzeba przekazac potozenie elementu
przed pierwszym modyfikowanym elementem, poniewaz witasnie
temu elementowi trzeba przypisac¢ nastepnika.

I—) - - = | R R - - -->

Inne kontenery STL

= Jako kontenerdow STL mozemy uzywac tanicuchéw lub zwyktych tablic
albo tez sami zdefiniowad specjalne kontenery zaspokajajace
specyficzne potrzeby. Takie postepowanie posiada te zalete, ze
mozemy wykorzystac algorytmy, takie jak sortowanie czy scalanie,
wobec wiasnego typu.

® tancuchy traktowac¢ mozna jako kontenery znakéw. Znaki
wystepujace wewnatrz taricucha tworzg cigg, po ktdrym mozemy
iterowac w celu przetwarzania poszczegolnych znakéw. Standardowe
klasy tancuchowe zapewniajg zatem interfejs kontenerowy STL.
Udostepniajg one funkcje sktadowe begin() oraz end(), ktére
Zwracajqg iteratory dostepu swobodnego umozliwiajgce iteracje po
elementach tancucha.

= /7wykte tablice nie sg jednak klasami, a wiec nie udostepniajg one
funkcji sktadowych, takich jak begin() czy end(). Nie mozemy réwniez
definiowac dla nich funkcji sktadowych. W takiej sytuacji musi zostac
zastosowane podejscie nieinwazyjne lub ostonowe.

Zbiory i wielozbiory

® Kontenery set<> oraz multiset<> wykonujg automatyczne
sortowanie swoich elementow zgodnie z okreslonym kryterium
sortowania.

® Ro&znica pomiedzy nimi polega na tym, ze wielozbiory
dopuszczajg powtdrzenia elementow, podczas gdy zbiory tego
nie dopuszczaja.

Wielozbior:

Zbiory i wielozbiory

= Elementy zbioru lub wielozbioru moga by¢ dowolnego typu,
ktory umozliwia operacje przypisania, kopiowania i porownania
zgodnie z kryterium sortowania (opcjonalny drugi parametr
szablonu definiuje kryterium sortowania).

= \Nszystkie asocjacyjne klasy kontenerowe, zbiory i wielozbiory sg
implementowane jako zréwnowazone drzewa BST (drzewa
czerwono-czarne).

/\
VRN VRN
VAN [\

Zbiory i wielozbiory

= Najwiekszg zaletg automatycznego sortowaniaw zbiorach i
wielozbiorach jest wysoka wydajnosc¢ drzew binarnych przy
wyszukiwaniu elementdw o okreslonej wartosci (ztozonos¢
logarytmiczna).

= Automatyczne sortowanie nakfada jednak na zbiory i wielozbiory
takze istotne ograniczenie — nie mozna bezposrednio zmienic
wartosci elementu, poniewaz mogtoby to zaburzy¢ prawidtowa
kolejnos¢.

= Zbiory i wielozbiory nie udostepniajg operacji realizujgcych
bezposredni dostep do elementdw.

