
C++17 i STL
Kolekcje

Kontenery

 Kontenery to obiekty, które zarządzają kolekcjami elementów:

 Kontenery sekwencyjne będące kolekcjami uporządkowanymi, w których
każdy element posiada określoną pozycję. Pozycja ta zależy od momentu
oraz miejsca wstawienia, jest jednak niezależna od wartości elementu.

 Kontenery asocjacyjne będące kolekcjami sortowanymi, w których
aktualna pozycja elementu zależy od jego wartości (albo klucza w
przypadku kontenerów operujących na parach klucz-wartość), zgodnie z
określonym kryterium sortowania.

 Kontenery nieporządkujące to kolekcje nieporządkujące i
niezachowujące pozycji elementów, bo ich zadaniem głównym jest
ustalanie, czy (a nie gdzie) element znajduje się w kolekcji. Elementy nie
zachowują więc uporządkowania ani względem kolejności wstawiania,
ani względem wartości – jedno i drugie może w czasie życia kontenera
ulegać zmianie.

Kontenery

 Kontenery posiadają różne implementacje:

 kontenery sekwencyjne są zazwyczaj implementowane jako tablice
dynamiczne albo listy;

 kontenery asocjacyjne są zazwyczaj implementowane jako
zrównoważone drzewa binarnych poszukiwań (drzewa czerwono-
czarne);

 kontenery nieporządkujące są zazwyczaj implementowane jako
tablice z haszowaniem.

Kontenery

Cechy kontenerów

 Wszystkie kontenery zapewniają semantykę wartości, a nie semantykę
referencji.

 Podczas operacji wstawiania kontenery, zamiast operować na referencjach do
elementów, wykonują wewnętrznie ich kopie.

 Obiekty, które chcemy umieścić w kontenerze, powinny posiadać publiczny
konstruktor kopiujący i publiczny operator przypisania kopiującego.

 Wszystkie elementy kontenera posiadają określoną kolejność. Każdy typ
kontenerowy udostępnia operacje zwracające iteratory, służące do iteracji po
elementach kolekcji.

 Możemy wykonywać wielokrotnie iteracje po elementach kolekcji i będą one
udostępniane w tej samej kolejności.

 Operacje na kontenerach nie są bezpieczne, czyli nie sprawdzają możliwości
wystąpienia każdego rodzaju błędów.

 Funkcja wywołująca operację na kontenerze musi zapewnić spełnienie
określonych wymagań przez parametry tej operacji – naruszenie tych
wymagań (na przykład użycie niepoprawnego indeksu) prowadzi do
niezdefiniowanego zachowania.

Cechy elementów kontenerów

 Element musi być kopiowalny albo przenaszalny. Typ elementu musi
więc niejawnie albo jawnie udostępniać konstruktor kopiujący albo
konstruktor przenoszący.

 Utworzona kopia powinna być równoważna elementowi źródłowemu.
Oznacza to, że dowolny test równości powinien wykazać, że obydwa
elementy są równe oraz że zarówno źródło, jak i kopia zachowują się
identycznie.

 Element musi być przypisywalny przez przypisanie kopiujące albo
przypisanie przenoszące.

 Kontenery i algorytmy wykorzystują operatory przypisania do
nadpisywania starych elementów nowymi.

 Element musi być zniszczalny przez destruktor.

 Kontenery niszczą swoje wewnętrzne kopie elementów, gdy elementy te
zostają usunięte z kontenera. Destruktor nie może więc być prywatny.
Destruktor nie może również zgłaszać wyjątków.

Wspólne operacje na kontenerach

 Standard definiuje zestaw operacji wspólnych dla wszystkich
kontenerów (z powodu różnorodności kontenerów dostępnych w
C++11 zdarzają się wyjątki i niektóre kontenery nie spełniają
wszystkich ogólnych wymogów):

 konstruktor domyślny,

 konstruktor kopiujący i przypisanie kopiujące,

 konstruktor przenoszący i przypisanie przenoszące,

 (opcjonalnie) konstruktor inicjalizowany kopiami elementów z
podanego zakresu w innej kolekcji i przypisanie,

 (opcjonalnie) konstruktor inicjalizowany kopiami elementów z listy
wartości przekazanych za pomocą initializer_list<>,

 destruktor publiczny, który usuwa wszystkie elementy kolekcji i
zwalnia pamięć (o ile to jest możliwe),

Wspólne operacje na kontenerach

 Standard definiuje zestaw operacji wspólnych dla wszystkich
kontenerów (z powodu różnorodności kontenerów dostępnych w
C++11 zdarzają się wyjątki i niektóre kontenery nie spełniają
wszystkich ogólnych wymogów):

 funkcja składowa empty(), która sprawdza czy kontener jest pusty,

 (opcjonalnie) funkcja składowa clear(), która usuwa wszystkie elementy z
kontenera,

 funkcje składowe size() i max_size(), które zwracają odpowiednio bieżącą
i maksymalną liczbę elementów w kontenerze,

 operatory == i != ustalające odpowiednio równość i nierówność
kontenerów,

 (opcjonalnie) operatory <, <=, > i >=, które ustalają relację między
kontenerami,

 funkcja składowa i statyczna swap(), która zamienia zawartość
kontenerów,

 funkcje składowe begin() i end() oraz cbegin() i cend(), które dostarczają
iteratorów pracujących na kolekcji.

Inicjalizacja

 const std::vector<int> v1 = { 1, 2, 3, 5, 7, 11, 13, 17, 21 };

 std::list<int> l;
…
std::vector<float> c(l.begin(),l.end());

 std::list<std::string> l;
…
std::vector<std::string> c(

std::make_move_iterator(l.begin()),
std::make_move_iterator(l.end())

);

 int carray[] = { 2, 3, 17, 33, 45, 77 };
…
std::set<int> c(std::begin(carray),std::end(carray));

 std::deque<int> c{
std::istream_iterator<int>(std::cin),
std::istream_iterator<int>()

};

Przypisania i zamiany

 Przypisanie kontenera oznacza skopiowanie wszystkich
elementów kontenera źródłowego i jednocześnie usunięcie
wszystkich starych elementów kontenera docelowego.

 Po przypisaniu przenoszącym kontener po lewej stronie
przypisania zawiera elementy, które wcześniej posiadał kontener
znajdujący się po prawej stronie przypisania. Zawartość
kontenera po prawej stronie po wykonaniu operacji jest
niezdefiniowana.

 Funkcja składowa swap() zamienia zawartość dwóch kontenerów.
W rzeczywistości zamianie ulegają jedynie wewnętrzne wskaźniki
na dane.

Operacje dotyczące rozmiaru

 Funkcja empty() informuje o zerowej liczbie elementów
(begin()==end()). Warto ją stosować zamiast konstrukcji
size()==0. Funkcja empty() może być zaimplementowana bardziej
wydajnie niż size().

 Funkcja size() zwraca aktualną liczbę elementów kontenera.
Operacji tej nie zapewnia się dla list typu forward_list<>, gdyż nie
miałaby stałej złożoności.

 Funkcja max_size() zwraca maksymalną liczbę elementów, które
może zawierać kontener. Wartość ta jest różnie zdefiniowana w
zależności od implementacji. Funkcja max_size() zwraca zwykle
maksymalną wartość reprezentowaną przez typ indeksu.

Porównania

 Jeśli nie liczyć kontenerów nieuporządkowanych, zwykle
operatory porównania ==, !=, <, <=, > oraz >= zdefiniowane są
według następujących trzech reguł:

 Obydwa kontenery muszą być tego samego typu.

 Dwa kontenery są równe, jeśli ich elementy są równe i posiadają tę
samą kolejność.

 W celu sprawdzenia, czy jeden kontener jest mniejszy od innego
kontenera, przeprowadzane jest porównanie leksykograficzne.

Dostęp do elementów

 Wszystkie kontenery udostępniają interfejs iteratora, co umożliwia
stosowanie pętli for bazujących na zakresach wartości:

 for (const auto& elem : coll) {
std::cout << elem << std::endl;

}

 for (auto& elem : coll) {
elem = ...;

}

 By korzystać z danych o pozycjach (na przykład by móc wstawiać,
usuwać lub przenosić elementy), można po prostu użyć iteratorów
udostępnianych przez cbegin() i cend():

 for (auto pos=coll.cbegin(); pos!=coll.cend(); ++pos) {
std::cout << *pos << std::endl;

}

 for (auto pos=coll.begin(); pos!=coll.end(); ++pos) {
*pos = ...;

}

Definicje typów w kontenerach

 Typ size_type jest typem całkowitym bez znaku dla wartości
rozmiaru.

 Typ value_type to typ elementów w kontenerze.

 Typ reference to typ referencji do elementu.

 Typ const_ reference to typ referencji do niemodyfikowalnego
elementu.

 Typ iterator to typ iteratora.

 Typ const_iterator to typ iteratora, który nie modyfikuje kolekcji.

 Typ pointer to typ wskaźnika do elementu.

 Typ const_pointer to typ wskaźnika niemodyfikującego do
elementu.

Tablice

 Kontener array<> modeluje tablicę statyczną – jest to otoczka dla
statycznej tablicy z języka C, zapewniająca interfejs kontenera
STL.

 Tablica to ciąg elementów o ustalonej długości – nie można więc
dodawać ani usuwać elementów i w ten sposób zmieniać jej
rozmiaru; możliwe jest tylko i wyłącznie zastępowanie
elementów.

Tablice

 Tablice kopiują elementy do własnych wewnętrznych, statycznych tablic.

 Tablice są kolekcją uporządkowaną, ponieważ elementy tablic są zawsze
ułożone w ścisłej kolejności.

 Tablice zapewniają swobodny dostęp do elementów – dostęp do każdego
elementu tablicy jest bezpośredni i ma stały czas.

 Kontener array<> to jedyny, którego elementy są inicjalizowane
domyślnie, jeśli nic nie zostanie przekazane jawnie – oznacza to, że dla typów
podstawowych wartość początkowa może być niezdefiniowana, zamiast
otrzymać wartość 0.
std::array<int,4> x; // elementy x są niezdefiniowane
std::array<int,4> x = {}; // wszystkie elementy x mają wartość 0
std::array<int,5> coll = {42, 377, 611, 21, 44};

// wskazania wartości początkowych tworzonej tablicy
std::array<int,10> c2 = {42};

// pierwszy element ma wartość 42 pozostałe 0

Tablice

 Kontener array<> udostępnia operacje swap() – można zamienić
elementy kontenera tego samego typu (taki sam typ elementów i
taka sama liczba elementów), trzeba jednak pamiętać, że array<>
nie może tak naprawdę podmienić wewnętrznych wskaźników (z
tego powodu swap() ma złożoność liniową, a iteratory i
referencje nie zamieniają kontenerów razem z wartościami).

 Poza operatorem przypisania możliwe jest tylko użycie operacji
fill() do przypisania nowej wartości wszystkim elementom lub
swap() do zamiany wartości z inną tablicą; w przypadku
operatora = lub funkcji swap() obie tablice muszą być tego
samego typu.

 Kontrolę zakresu robi to tylko funkcja at() – jeśli indeks nie mieści
się w zakresie, zgłasza ona wyjątek out_of_range. Pozostałe
funkcje nie wykonują tego sprawdzenia. Wywołanie operatora []
oraz funkcji front() i back() wobec pustego kontenera array<>
powoduje zawsze niezdefiniowane zachowanie.

Tablice

 Tablice zapewniają interfejs krotki – oznacza to, że można użyć
wyrażeń w stylu tuple_size<>::value do uzyskania liczby
elementów, tuple_element<>::type do uzyskania typu
konkretnego elementu i get() do uzyskania wartości konkretnego
elementu.

 Oto przykład:
typedef std::array<std::string,5> FiveStrings;
FiveStrings a = { "witaj", "janie", "jak", "się", "masz" };

std::tuple_size<FiveStrings>::value // zwraca 5
std::tuple_element<1,FiveStrings>::type // zwraca std::string
std::get<1>(a) // zwraca std::string("janie")

Wektory

 Kontener vector<> jest modelem tablicy dynamicznej – jest on
abstrakcją, której elementy zarządzane są przy użyciu
dynamicznej tablicy w stylu języka C.

 Pojemność wektorów nigdy nie się zmniejsza, istnieje więc
gwarancja, że referencje, wskaźniki oraz iteratory pozostaną
ważne nawet w przypadku usuwania elementów, pod warunkiem
że odnoszą się one do pozycji występującej przed
modyfikowanymi elementami.

Wektory

 Wektory kopiują swoje elementy do wewnętrznej tablicy
dynamicznej. Elementy te zawsze posiadają określoną kolejność.
Wektory są więc swego rodzaju kolekcją uporządkowaną.

 Wektory umożliwiają dostęp bezpośredni. Możemy więc
bezpośrednio odwołać się do każdego elementu w stałym czasie,
pod warunkiem że znamy jego pozycję.

 Iteratory wektora są iteratorami dostępu swobodnego, możemy
więc użyć każdego algorytmu z biblioteki STL.

 Wektory zapewniają dobrą wydajność, jeśli dołączamy lub
usuwamy elementy na ich końcu. W przypadku wstawiania lub
usuwania elementów w środku lub na początku wektora
wydajność spada.

Wektor bitów

 Dla elementów boolowskich wektora biblioteka STL udostępnia
specjalizację kontenera vector<bool>, która przeznacza
wewnętrznie zwykle tylko 1 bit na każdy element.

 Klasa vector<bool> jest czymś więcej niż tylko specjalizacją –
klasa vector<> dla typu bool udostępnia kilka specjalnych
operacji bitowych, które umożliwiają operowanie na bitach lub
znacznikach w wygodniejszy i szybszy sposób.

Kolejki o dwóch końcach

 Kontener deque<>, czyli kolejka o dwóch końcach, jest bardzo
podobna do wektora – zarządza swoimi elementami,
wykorzystując tablicę dynamiczną, zapewnia dostęp swobodny
oraz posiada prawie taki sam interfejs co wektor; różnica polega
na tym, że w przypadku kolejki deque<> tablica dynamiczna jest
otwarta z obydwu końców.

Kolejki o dwóch końcach

 Wstawanie i usuwanie elementów jest szybkie zarówno na
początku, jak i na końcu kontenera.

 Kolejki deque<> nie oferują możliwości sterowania pojemnością
ani momentem realokacji.

 Bloki pamięci mogą zostać zwolnione w przypadku, gdy nie są już
wykorzystywane, tak więc rozmiar obszaru pamięci zajmowanego
przez kolejkę deque może się zmniejszyć.

Listy

 W liście list<> elementy zorganizowane są w postaci listy
dwukierunkowej.

 Obiekt listy zawiera dwa wskaźniki nazywane też
zakotwiczeniami, które wskazują pierwszy i ostatni element listy.
Każdy element zawiera wskaźniki do następnego lub
poprzedniego elementu (lub do zakotwiczenia). Wstawienie czy
usunięcie elementu wymaga jedynie zmian odpowiednich
wskaźników.

Listy

 Lista nie zapewnia dostępu swobodnego.

 Wstawianie i usuwanie elementów jest szybkie na każdej pozycji
(o ile ma się już do niej dostęp).

 Operacje wstawiania i usuwania elementów nie powodują
unieważnienia wskaźników, referencji ani iteratorów do innych
elementów.

 Listy zapewniają funkcje front(), push_front() i pop_front(), a
także back(), push_back() i pop_back().

Listy jednokierunkowe

 Lista jednokierunkowa forward_list<> została wprowadzona w C++11
do zarządza elementami jako lista związana z pojedynczymi
wskaźnikami.

 Koncepcyjnie lista jednokierunkowa przypomina standardową listę,
ale zubożoną w ten sposób, iż nie jest w stanie iterować w tył.

 Dla wszystkich funkcji składowych modyfikujących listę w taki
sposób, że elementy są wstawiane lub usuwane na konkretnych
pozycjach, lista jednokierunkowa oferuje ich specjalne wersje –
powód jest bardzo prosty, bo trzeba przekazać położenie elementu
przed pierwszym modyfikowanym elementem, ponieważ właśnie
temu elementowi trzeba przypisać następnika.

Inne kontenery STL

 Jako kontenerów STL możemy używać łańcuchów lub zwykłych tablic
albo też sami zdefiniować specjalne kontenery zaspokajające
specyficzne potrzeby. Takie postępowanie posiada tę zaletę, że
możemy wykorzystać algorytmy, takie jak sortowanie czy scalanie,
wobec własnego typu.

 Łańcuchy traktować można jako kontenery znaków. Znaki
występujące wewnątrz łańcucha tworzą ciąg, po którym możemy
iterować w celu przetwarzania poszczególnych znaków. Standardowe
klasy łańcuchowe zapewniają zatem interfejs kontenerowy STL.
Udostępniają one funkcje składowe begin() oraz end(), które
zwracają iteratory dostępu swobodnego umożliwiające iterację po
elementach łańcucha.

 Zwykłe tablice nie są jednak klasami, a więc nie udostępniają one
funkcji składowych, takich jak begin() czy end(). Nie możemy również
definiować dla nich funkcji składowych. W takiej sytuacji musi zostać
zastosowane podejście nieinwazyjne lub osłonowe.

Zbiory i wielozbiory

 Kontenery set<> oraz multiset<> wykonują automatyczne
sortowanie swoich elementów zgodnie z określonym kryterium
sortowania.

 Różnica pomiędzy nimi polega na tym, że wielozbiory
dopuszczają powtórzenia elementów, podczas gdy zbiory tego
nie dopuszczają.

Zbiory i wielozbiory

 Elementy zbioru lub wielozbioru mogą być dowolnego typu,
który umożliwia operacje przypisania, kopiowania i porównania
zgodnie z kryterium sortowania (opcjonalny drugi parametr
szablonu definiuje kryterium sortowania).

 Wszystkie asocjacyjne klasy kontenerowe, zbiory i wielozbiory są
implementowane jako zrównoważone drzewa BST (drzewa
czerwono-czarne).

Zbiory i wielozbiory

 Największą zaletą automatycznego sortowaniaw zbiorach i
wielozbiorach jest wysoka wydajność drzew binarnych przy
wyszukiwaniu elementów o określonej wartości (złożoność
logarytmiczna).

 Automatyczne sortowanie nakłada jednak na zbiory i wielozbiory
także istotne ograniczenie – nie można bezpośrednio zmienić
wartości elementu, ponieważ mogłoby to zaburzyć prawidłową
kolejność.

 Zbiory i wielozbiory nie udostępniają operacji realizujących
bezpośredni dostęp do elementów.

