Exercise 5

Deadline: 14 January, 2020.

THE JAVA PROGRAMMING LANGUAGE

THE BINARY SEARCH TREE

University of Wrocław Institute of Computer Science

Paweł Rzechonek

Subexercise 1

Define a generic class to maintain a dynamic set in the binary search tree BST<T>. This class should be a wrapper for a homogeneous structure formed of objects of type BSTNode. Your class should implement the dictionary operations: search() check whether the item exists in the tree, insert() add a new value into the tree, and delete() remove a given value from the tree. of a given element defined Declare the operation in the interface Dictionary<T>. Note, that each operation on a binary search tree (especially searching) require comparisons between nodes.

```
class BST<T extends Comparable<T>> implements Dictionary<T>
{
    private class BSTNode <T extends Comparable<T>>
    {
        BSTNode<T> left, right, parent;
        T data;
        // ... dictionary operations
    }
    private BSTNode<T> root;
    // ... dictionary operations
    public String toString () { /*...*/ }
}
```

When you will try to insert into the tree the value null your program should throw the exception NullPointerException. Append to the class BST a method giving the number of items in the tree size() and a method removing all items from the tree clean().

Define all your classes, interfaces, and exceptions in package algorithms.

Subexercise 2

Append to the class representing BST a method iterator(), which will create and return an iterator associated with the tree. The iterator should implement an interface Iterator<T>. Your iterator should be sensitive to any changes in the tree — if a tree during the iterator walk will be modified, the next use of the iterator should result in throwing an exception <code>lllegalStateException</code>.

```
class BSTIterator<T extends Comparable<T>> implements Iterator<T>
{
     // ... iterator operations
}
```

Define all your classes, interfaces, and exceptions in package algorithms.

Subexercise 3

Finally, write a program that will reliably test all the operations defined in the BST and in the associated iterator. Test the BST on the data type Integer and String.

Requirement

Create, build, and run your application in NetBeans, or Eclipse, or IntelliJ IDE.

Hint

Some information about BST can be obtained on the website:

http://en.wikipedia.org/wiki/Binary_search_tree