
Listy

Zbiór dynamiczny
 Zbiór dynamiczny to zbiór wartości pochodzących z

pewnego określonego uniwersum, którego zawartość
zmienia się w trakcie działania programu.

 Elementy zbioru dynamicznego musimy co najmniej
umieć porównać pod względem identyczności (czy
dwa elementy są równe albo różne).

 W multizbiorze elementy mogą się powtarzać.

Dynamiczne struktury danych
 Dynamiczna struktura danych, to struktura danych

pozwalająca na przechowywanie zbioru
dynamicznego; rozmiar tej struktury dostosowuje się
do rozmiaru danych.

 W zbiorze dynamicznym musimy umieć realizować
operację dodania nowego elementu do zbioru i
usunięcia ze zbioru wskazanego elementu.

 Tablica dynamiczna jest dynamiczną strukturą danych.

 Zastosowanie: przechowywanie pewnego zbioru
danych, którego zawartość i ilość elementów będzie
się zmieniać w trakcie pracy programu.

Słownik
 Słownik (ang. dictionary) to struktura danych

pozwalająca efektywnie realizować następujące
operacje:
 insert(x) – dodanie nowego elementu x do zbioru

dynamicznego,
 delete(x) / remove(x) – usunięcie elementu o wartości

x ze zbioru dynamicznego,
 search(x) – sprawdzenie czy w zbiorze dynamicznym

znajduje się element o wartości x.

 Multizbiór to zbiór dynamiczny, w którym mogą się
powtarzać elementy o takich samych wartościach.

 Struktura danych jest homogeniczna, jeśli składa się
z elementów tego samego typu.

Lista
 Lista (ang. list) to homogeniczna struktura danych

służąca do reprezentowania zbioru dynamicznego, w
której elementy ułożone w ciąg (struktura
sekwencyjna).

 Element listy nazywa się węzłem (ang. node); każdy
węzeł zawiera pole value służące do
przechowywania jednej wartości z pewnego
określonego uniwersum oraz pole next ze
wskaźnikiem na następny element listy (ostatni
element listy ma w polu next wpisany wskaźnik
pusty).

Lista
 Pierwszy węzeł listy jest nazywany głową (ang. head)

albo początkiem listy; reszta listy znajdująca się za
głową jest nazywana ogonem (ang. tail).

 Dostęp do elementów listy jest sekwencyjny – a więc
dojście do elementu k-tego wymaga przejścia przez
kolejne elementy listy od pierwszego do docelowego.

 Zastosowanie: lista najlepiej nadaje się do danych,
które będą przetwarzane sekwencyjnie.

Lista jednokierunkowa
 Lista jednokierunkowa (ang. single linked list) to lista,

po której można się poruszać tylko od głowy do ogona
– w każdym węźle jest tylko wskaźnik do następnika.

Lista dwukierunkowa
 Lista dwukierunkowa (ang. double linked list) to lista,

po której można się poruszać w obu kierunkach: w
stronę głowy i w stronę ogona – w każdym węźle są
dwa wskaźniki next do następnika i prev do
poprzednika.

Lista cykliczna
 Lista cykliczna to lista, w której ostatni węzeł posiada

wskaźnik do pierwszego węzła.

 Przetwarzając listę cykliczną należy sprawdzać, czy nie
powtarzamy przetwarzania od początku.

 Lista dwukierunkowa może być cykliczna.

Lista uporządkowana
 Gdy dane pochodzą z uniwersum z porządkiem

liniowym, to dane w liście można przechowywać w
sposób uporządkowany – mamy w tedy do czynienia z
listą uporządkowaną.

Lista z wartownikiem
 Lista z wartownikiem (ang. sentry) to lista, w której na

końcu umieszczony jest węzeł zwany wartownikiem –
wartownik nie przechowuje danych, pełni rolę
pomocniczą w nawigacji po liście.

 Lista z wartownikiem może być cykliczna lub
dwukierunkowa.

Lista
Wyszukiwanie wartości w liście jednokierunkowej – wersja
iteracyjna

Search(wezeł *w, x) -> boolean

{

while (w.value != x) {

if (w.next != null) w := w.next;

else return false;

}

return true;

}

Czas: O(n) gdzie n to ilość elementów na liście
Pamięć: O(1)

Lista
Wyszukiwanie wartości w liście jednokierunkowej – wersja
rekurencyjna

Search(wezeł *w, x) -> boolean

{

if (w == null) return false;

if (w.value == x) return true;

return Search(w.next, x);

}

Czas: O(n) gdzie n to ilość elementów na liście
Pamięć: O(n) zależy od liczby wywołań rekurencyjnych

Lista
Wyszukiwanie wartości w liście jednokierunkowej z
wartownikiem – wersja iteracyjna

Search(wezeł *w, wezel *sentry, x) ->
boolean

{
sentry.value = x;

while (w.value != x) w := w.next;

return w != sentry;

}

Czas: O(n) gdzie n to ilość elementów na liście
Pamięć: O(1)

Lista
Wyszukiwanie wartości w liście posortowanej – wersja
rekurencyjna

Search(wezeł *w, x) -> boolean

{

if (w == null) return false;

if (w.value == x) return true;

if (w.value > x) return false;

return Search(w.next, x);

}

Czas: O(n) gdzie n to ilość elementów na liście
Pamięć: O(n) zależy od liczby wywołań rekurencyjnych

Lista
 Wstawianie elementu do listy nieuporządkowanej:

 na zadaną pozycję,
 na początek albo na koniec listy.

 Wstawianie elementu do listy uporządkowanej:
 wstawiamy zachowując uporządkowanie

 Usuwanie elementu z listy:
 usunięcie elementu pierwszego albo ostatniego,
 usuwanie elementu z zadanej pozycji,
 usuwanie elementu o zadanej wartości,
 usunięcie wszystkich elementów o zadanej wartości z

multizbioru.

 Odczytanie elementu na zadanej pozycji:
 zwracamy wartość z określonej pozycji na liście.

Listy
 Technika zwracania wskaźnika do struktury po zmodyfikowaniu

(semitrwałe struktury danych).
 Przykład: wstawienie elementu na zadaną pozycję:
insert(węzeł *w, x, pos) -> węzeł*
{

if (pos < 0) error;
if (w == null and pos > 0) error;
if (pos > 0) {

w.next := insert(w.next, x, pos-1);
return w;

}
else return new węzeł(x, w);

}

wywołanie:
head := insert(head, x, pos);

Listy
 Operacje słownikowe na liście n-elementowej

wymagają:

 czasu O(n),

 pamięci O(1) gdy używamy iteracji albo O(n) gdy
korzystamy z rekurencji.

Problemy z listami
 Jak wskazać element środkowy na liście

jednokierunkowej?

 Wyobraźmy sobie, że lista może być zapętlona (ostatni
węzeł wskazuje jako następnika element w środku
listy).

 Jak sprawdzić, czy lista się pętli?

 Jak obliczyć długość takiej listy?

