
Kurs języka C++
4. Przeciążanie operatorów



Spis treści

 Funkcje zaprzyjaźnione

 Przeciążanie operatorów

 Operatory składowe w klasie

 Zaprzyjaźnione funkcje operatorowe

 Operatory predefiniowane

 Niestatyczne operatory składowe

 Operatory new i delete

 Operatory strumieniowe << i >>



Funkcje zaprzyjaźnione

 Problem z kwiatkami w domu w czasie dalekiej podróży służbowej.

 Funkcja, która jest przyjacielem klasy, ma dostęp do wszystkich jej 

prywatnych i chronionych składowych.

 To klasa deklaruje, które funkcje są jej przyjaciółmi.

 Deklaracja przyjaźni może się pojawić w dowolnej sekcji i jest 
poprzedzona słowem kluczowym friend.



Funkcje zaprzyjaźnione

 Przykład klasy z funkcją zaprzyjaźnioną:

// klasa z funkcją zaprzyjaźnioną

class pionek

{

int x, y;

// …

friend void raport (const pionek &p);

};

// funkcja, która jest przyjacielem klasy

void raport (const pionek &p)

{

cout << "(" << p.x << ", " << p.y << ")";

}



Funkcje zaprzyjaźnione

 Nie ma znaczenia, w której sekcji (prywatnej, 
chronionej czy publicznej) pojawi się deklaracja 
przyjaźni.

 Funkcja zaprzyjaźniona z klasą nie jest jej 
składową, nie może używać wskaźnika this w 
stosunku do obiektów tej klasy.

 Jedna funkcja może się przyjaźnić z kilkoma 
klasami.

 Istotą przyjaźni jest dostęp do niepublicznych 
składowych w klasie – sensowne jest deklarowanie 
przyjaźni, gdy dana funkcja pracuje z obiektami tej 
klasy.



Funkcje zaprzyjaźnione

 Można także umieścić w klasie nie tylko deklarację 

funkcji zaprzyjaźnionej, ale również jej definicję; tak 

zdefiniowana funkcja:

 jest nadal tylko przyjacielem klasy;

 jest inline;

 może korzystać z typów zdefiniowanych w klasie.

 Funkcją zaprzyjaźnioną może być funkcja składowa z 

innej klasy.



Klasy zaprzyjaźnione

 Możemy w klasie zadeklarować przyjaźń z inną 
klasą, co oznacza, że każda metoda tej innej klasy 
jest zaprzyjaźniona z klasą pierwotną.

 Przykład:
class A
{

friend class B;
// …

};

 Przyjaźń jest jednostronna.

 Przyjaźń nie jest przechodnia.

 Przyjaźni się nie dziedziczy.



Klasy zaprzyjaźnione

 Dwie klasy mogą się przyjaźnić z 
wzajemnością:

class A;
class B;

class B {
friend class A;
// …

};
class A {

friend class B;
// …

};



Po co przeciążać operatory?

 Porównaj dwa wyrażenia:
y = a*x+b;

y = dodaj(pomnoz(a,x),b);

 A teraz wyobraź sobie funkcyjny zapis takiego wyrażenia:
y = (a*c-b*d)/(a*a+b*b);

 Operatory tylko upraszczają notację wyrażeń.



Przykład 

przeciążenia operatora

 Przykład klasy pamiętającej liczbę zespoloną, dla której 
przeciążymy operator dodawania:
class comp

{

public:

const double re, im;

public:

comp (double r=0, double i=0) : re(r), im(i) {}

comp (const comp &c) : re(c.re), im(c.im) {}

};

 Przykład operatora dodawania dla obiektów z liczbami zespolonymi:
comp operator + (comp a, comp b)

{

return comp(a.re+b.re, a.im+b.im);

}

 Przykład użycia operatora dodawania liczb zespolonych:
comp a(2), b(3,5), c = a + b;



Ogólne zasady przeciążania 

operatorów

 Można tylko przeciążać operatory, nie wolno 

definiować nowych.

 Przy przeciążaniu operatora nie można zmienić 

jego priorytetu, arności ani łączności.

 Co najmniej jeden z argumentów przeciążanego 

operatora musi się odnosić do klasy (nie wolno 

zmieniać znaczenia operatorów w stosunku do 

typów podstawowych).

 Nie wolno używać argumentów domyślnych w 

operatorach.



Przeciążanie operatorów

 Nazwa funkcji operatorowej to operator @, gdzie 
@ to symbol (nazwa) operatora.

 Można deklarować funkcje definiujące znaczenie 
następujących operatorów:
+ - * / % ^ & | << >>
+= -= *= /= %= ^= &= |= <<= >>=
= ~ ! < > <= >= == != ,
&& || ++ -- -> ->* [] ()
new new[] delete delete[]

 Można definiować zarówno operatory 
dwuargumentowe jak i jednoargumentowe 
(prefiksowe i postfiksowe).



Przeciążanie operatorów

 Nie można definiować następujących operatorów:
?: (operator warunkowy)
:: (rezolucja zasięgu)
. (wybór składowej)
.* (wybór składowej za pomocą wskaźnika do 
składowej)

 Nie można też przeciążyć operatora, który podaje 
rozmiar obiektu sizeof oraz operatora 
rozmieszczenia danych w pamięci alignof.

 Nie wolno przeciążać operatorów rzutowania:
static_cast, dynamic_cast, const_cast i 
reinterpret_cast.

 Nie wolno definiować operatorów # i ##, które są 
poleceniami dla prekompilatora.



Zaprzyjaźnione 

funkcje operatorowe

 Bardzo często funkcje operatorowe sięgają do ukrytych składowych w 
klasie – wtedy wygodnie jest zadeklarować w klasie przyjaźń z takim 
operatorem.

 Przykład:
class comp {

friend comp operator + (comp a, comp b);
double re, im;

public:
comp (double r=0, double i=0) : re(r), im(i) {}
// …

};
comp operator + (comp a, comp b) {

return comp(a.re+b.re, a.im+b.im);
}
…
comp x(3, 7), y(5);
x = x + y;
x = x + 8.5;
x = -7.5 + x;



Operatory składowe w klasie

 Można zdefiniować operator jako funkcję składową w klasie – wtedy 
pierwszym niejawnym argumentem będzie obiekt tej klasy.

 Przykład:
class comp {

double re, im;
public:

comp (double r=0, double i=0) : re(r), im(i) {}
// …
comp operator- (comp b);
comp operator- ();

};
comp comp::operator- (comp b) {

return comp(re-b.re, im-b.im);
}
comp comp::operator- () {

return comp(-re, -im);
}
…
comp x(3, 7), y(5);
x = -x - y;
x = x - 8.5;
// x = 7.5 - x; // błąd



Symboliczne i funkcyjne

wywołanie funkcji operatorowej

 Niech dana będzie funkcja operatorowa operator@. Wtedy możemy ją 
wywołać na dwa sposoby:
x @ y // wywołanie symboliczne
operator@(x, y) // wywołanie funkcyjne

 Niech dana będzie składowa funkcja operatorowa operator @. Wtedy 
możemy ją wywołać na dwa sposoby:
x @ y // wywołanie symboliczne
x.operator@(y) // wywołanie funkcyjne



Operatory predefiniowane

 Jest kilka operatorów, których znaczenie jest tak intuicyjne, że są one 
automatycznie wygenerowane dla każdej klasy:

 przypisanie =,

 jednoargumentowy operator pobrania adresu &,

 separacja kolejnych wyrażeń ,(przecinek),

 tworzenie i usuwanie obiektów new, new[], delete, delete[].

 Można zdefiniować własne wersje wymienionych operatorów, jeśli chcemy 
zmienić ich domyślne zachowanie.



Niestatyczne operatory składowe

 Istnieją cztery operatory, które muszą być niestatycznymi operatorami 

składowymi:
przypisanie =,

indeksowanie [],

wywołanie funkcji (),

odwołanie do składowej ->.



Operator przypisania =

 Jeśli nie zdefiniujemy przypisania kopiującego, to wygeneruje go 
kompilator (o ile nie ma w naszej klasie pól stałych).

 Postać operatora przypisania kopiującego:
K & K::operator= (K &k) {/*…*/}
K & K::operator= (const K &k) {/*…*/}

 Domyślny operator przypisania kopiującego kopiuje składnik po składniku. 
Ale czasami takie kopiowanie nie jest dobre!

 Operator przypisania można przeciążać.

 Cechy prawidłowo napisanego operatora przypisania:
 nie zmienia stanu wzorca, z którego kopiuje;

 sprawdza, czy nie kopiuje sam na siebie;

 likwiduje bieżące zasoby (podobnie do destruktora);

 tworzy nowy stan obiektu na podobieństwo wzorca (podobnie jak konstruktor kopiujący).

 Przykład:
K & K::operator= (const K &k)
{

if (&k==this) return *this;
this->~K();
// kopiowanie stanu z obiektu k
return *this;

} 



Operator indeksowania []

 Operator odwołania do tablicy można zaadoptować do 

odwoływania się do elementów kolekcji wewnątrz obiektu.

 Aby odwołanie indeksowe mogło stać po obu stronach operatora 

przypisania musimy zwracać referencję do elementu kolekcji.

 Indeksować można dowolnym typem (niekoniecznie int).



Operator wywołania funkcji ()

 Operator wywołania funkcji () może mieć dowolną 
liczbę argumentów (również więcej niż dwa).

 Operator ten może mieć argumenty domniemane.

 Operator ten można przeciążać wiele razy w klasie.

 Wywołuje się go na rzecz jakiegoś obiektu. 
Przykład:
class K;
K a;
// …
a(); // a.operator()();
// …
a(1,2,3); // a.operator()(1,2,3);



Operator wskazywania 
na składową ->

 Operator ten wywołujemy na obiekcie (a nie na wskaźniku do danego 

obiektu).

 Operator ten musi zwracać albo wskaźnik albo obiekt takiej klasy, który 
ma przeładowany operator ->.

 Wywołanie:
obiekt->skladowa

Interpretacja wywołania:
(obiekt.operator->())->skladowa



Postinkrementacja 

i postdekrementacja 

 Operatory ++ i -- mogą być zarówno prefiksowe jak i 
postfiksowe; prefiksowe operatory ++ i -- definiuje się  jako 
jednoargumentowe (naturalna definicja) a postfiksowe jako 
dwuargumentowe:
class K
{
public:

// operatory prefiksowe
K & operator ++ ();
K & operator -- ();
// operatory postfiksowe
K operator ++ (int);
K operator -- (int);
// …

}; 



Operatory new i new[]

oraz delete i delete[]

 W klasie można zdefiniować własne operatory new i delete; 
jeśli są one zdefiniowane to kompilator użyje właśnie ich (a nie 
globalnych operatorów) do przydzielania i zwalniania pamięci.

 Definicja operatorów new i delete musi wyglądać 
następująco:
class K
{
public:

// operator new
static void* operator new (size_t s);
static void* operator new[] (size_t s);
// operator delete
static void operator delete (void *p);
static void operator delete[] (void *p);
// …

};

 W definicji własnych operatorów new i delete można 
odwoływać się do globalnych operatorów przydzielania i 
zwalniania pamięci ::new i ::delete.



Operatory new i new[]

 Operator new ma przydzielić pamięć dla 
pojedynczego obiektu a operator new[] dla tablicy 
obiektów.

 Operatory new i new[] muszą być statyczne w 
klasie.

 Operatory new i new[] zwracają jako wynik wartość 
typu void*.

 Operatory new i new[] przyjmują jako argument 
wartość typu size_t (w przypadku new ma to być 
rozmiar jednego obiektu a w przypadku new[]
rozmiar wszystkich obiektów łącznie); argument ten 
jest do tych operatorów przekazywany niejawnie (za 
pomocą operatora sizeof).

 Gdy zabraknie pamięci należy zgłosić wyjątek 
bad_alloc.



Operatory delete i delete[]

 Operator delete ma zwolnić pamięć dla 

pojedynczego obiektu a operator delete[] dla 

tablicy obiektów.

 Operatory delete i delete[] muszą być statyczne 

w klasie.

 Operatory delete i delete[] nie zwracają wyniku 

(są typu void).

 Operatory delete i delete[] przyjmują jako 

argument wskaźnik typu void*.



Globalne operatory new i new[]

oraz delete i delete[]

 Można zdefiniować własne wersje globalnych operatorów new i new[]
oraz delete i delete[] ale:

 w ten sposób całkowicie niszczymy oryginalne wersje tych operatorów;

 operator ::new jest używany w bibliotekach standardowych do tworzenia 
obiektów globalnych (takich jak cin czy cout) jeszcze przed uruchomieniem 
funkcji main().

 najczęściej własne definicje tych operatorów to błąd projektowy, który może 
doprowadzić do katastrofy w działaniu programu…



Operatory new[] i delete[]

 Operator new[] przydziela pamięć dla tablicy 

obiektów. Wszystkie obiekty w nowoutworzonej 

tablicy będą zainicjalizowane konstruktorem 

domyślnym (pamiętaj o zdefiniowaniu konstruktora 

domyślnego w klasie, której obiekty będą 

występować w tablicach).

 Operator delete[] zwalnia pamięć przydzieloną 

dla tablicy obiektów. Przed zwolnieniem tej 

pamięci dla wszystkich obiektów dostanie 

wykonany destruktor.



Operatory << i >>

do pracy ze strumieniami

 Wygodnie jest zdefiniować operatory << i >> do pracy ze 
strumieniami; aby można było pracować z takimi operatorami 
w sposób kaskadowy powinny one być zdefiniowane jako 
funkcje zewnętrzne w stosunku do klasy:
class K
{

// operator czytajacy dane ze strumienia
friend
istream& operator >>
(istream &is, K &k);
// operator piszacy dane do strumienia
friend
ostream& operator <<
(ostream &os, const K &k);
// …

}; 


