
Exercise 3 Deadline: 30 April, 2020.

C++ programming language

Polynomials

University of Wrocław
Institute of Computer Science Paweł Rzechonek

Prologue.

A polynomial of degree n is a function of the form

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0

where the a’s are real numbers (sometimes called the coefficients of the polynomial). The degree
of a polynomial is the highest power of x in its expression.

Task.

Define the class polynomial to store polynomial with a certain degree. Design this class
so that the polynomial degree and its coefficients are non-public (coefficients keep in the table
created on the heap). You must define methods that allow you to read and set these fields: define
the member function to read the polynomial degree, and define the indexing operator for reading
and writing coefficients. If the program attempted to set the coefficient with the highest power
to 0, an exception should be raised (except when the polynomial degree is equal to 0).

class polynomial

{

private:

int n; // the degree of the polynomial

double *a; // the coefficients of the polynomial

// ...

};

Coefficients of the polynomial let be written in the table according to indexes, so the first
coefficient a0 is written in the cell a[0].
In the class polynomial, define a non-argument constructor, and constructor with a list of

coefficients. Implement copying and moving in the polynomial class.

class polynomial

{

public:

polynomial (int deg=0, double coef=1.0); // monomial

polynomial (int deg, const double coef[]);

1

polynomial (initalizer_list<double> coef);

polynomial (const polynomial &poly); // copy constructor

polynomial (polynomial &&poly); // move constructor

polynomial& operator = (const polynomial &poly); // copy assignment

polynomial& operator = (polynomial &&poly); // move assignment

~polynomial (); // destructor

// ...

};

The destructor should release the memory allocated to remember the polynomial coefficients.
Define the polynomials addition and subtraction operator, polynomial multiplication operator

(multiplication by constant and multiplication by another polynomial), and the function to
calculating the polynomial at a given point using the Horner scheme.

class polynomial

{

public:

friend polynomial operator + (const polynomial &p, const polynomial &q);

friend polynomial operator - (const polynomial &p, const polynomial &q);

friend polynomial operator * (const polynomial &p, const polynomial &q);

friend polynomial operator * (double c);

polynomial& operator += (const polynomial &q);

polynomial& operator -= (const polynomial &q);

polynomial& operator *= (const polynomial &q);

polynomial& operator *= (double c);

double operator () (double x) const; // Horner scheme

double operator [] (int i) const; // coefficient a_i

// ...

};

The polynomial class should make it easy to read the coefficients standing at monomials using
the indexing operator. Remember about stream operators.
At the end, write a program that reliably tests all operations on polynomials. All objects in

your program should be created on the stack.

Notice.

Divide the program into header and source files. Put the main() function in a separate source
file.

2

