laboratorium: zadanie 5 termin: 6-9 kwietnia 2020 r.

KURS JEZYKA C++

TABLICA BITOW

Instytut Informatyki Uniwersytetu Wroctawskiego Pawel Rzechonek

Iloéciowym aspektem informacji zajmuje sie statystyczno—syntaktyczna teoria informacji Har-
tleya i Shannona. Miary ilosci informacji sa w niej oparte na prawdopodobienstwie zajs$cia zda-
rzenia. Jako miare ilodci informacji przyjmuje sie wielko$¢ niepewnosci, ktora zostala usunigta
w wyniku zajScia zdarzenia (otrzymania komunikatu). Zdarzenia (komunikaty) mniej prawdo-
podobne daja wiecej informacji.

Bit to najmniejsza jednostka informacji potrzebna do okreSlenia, czy zdarzenie zaszlo czy
tez nie. Bit moze przyja¢ jedna z dwdch wartosci, ktére zwykle okresla sie jako 0 (zero) i I
(jeden), choé¢ mozna przyjaé¢ dowolng inna pare wartosci, na przyklad prawda i falsz albo tak i
nie; w pierwszym przypadku bit jest tozsamy z cyfra w systemie dwdjkowym.

Zadanie.

Zdefiniuj klase tab_bit reprezentujaca tablice bitéw. Najprosciej implementuje sie taka struk-
ture danych za pomoca zwyklej tablicy typu uint16_t[], przeznaczajac na zapamietanie bitu
cale stowo. Jest to rozwiazanie proste, ale bardzo rozrzutne co do zuzywanej pamieci — tablica
bitéw pamietana w ten sposéb jest kilanascie razy obszerniejsza niz potrzeba. A wiegc takie
rozwiazanie nas nie satysfakcjonuje, szczegélnie gdy trzeba postugiwaé sie w programie wieloma
duzymi tablicami (chodzi o tablice przechowujace tysiace a nawet miliony bitéw).

Nalezy zatem tak zaprojektowaé tablice bitéw, aby przydzielona pamie¢ byta wykorzystana
co do bitu (modulo rozmiar stowa). W klasie tab_bit zdefiniuj operator indeksowania, ktéry
umozliwialby zaréwno czytanie z tablicy, jak réwniez pisanie do niej. Oto fragment kodu, ktéry
powinien sie skompilowaé i uruchomié:

tab_bit t(46); // tablica 46-bitowa (zainicjalizowana zerami)

tab_bit u(45ull); // tablica 64-bitowa (sizeof (uint64_t)*8)

tab_bit v(t); // tablica 46-bitowa (skopiowana z t)

tab_bit w(tab_bit(8){1, 0, 1, 1, 0, 0, 0, 1}); // tablica 8-bitowa (przeniesiona)
v[0] = 1; // ustawienie bitu O-go bitu na 1

t[45] = true; // ustawienie bitu 45-go bitu na 1

bool b = v[1]; // odczytanie bitu 1-go

u[45] = ul46] = ul[63]; // przepisanie bitu 63-go do bitow 45-go i 46-go
cout<<t<<endl; // wysietlenie zawartos$ci tablicy bitéw na ekranie

Poniewaz nie mozna zaadresowaé pojedynczego bitu (a tym samym nie mozna ustamowié
referencji do niego), wiec trzeba sie postuzy¢ specjalna technika umozliwiajaca dostep do poje-
dynczego bitu w tablicy. Robi sie to poprzez zastosowanie obiektéw niewidocznej dla programisty
klasy pomocniczej ref, potrafiacej odczytac i zapisa¢ pojedynczy bit w tablicy.

class tab_bit
{
typedef uint64_t slowo; // komorka w tablicy
static const int rozmiarSlowa; // rozmiar slowa w bitach
friend istream & operator >> (istream &we, tab_bit &tb);
friend ostream & operator << (ostream &wy, const tab_bit &tb);
class ref; // klasa pomocnicza do adresowania bitéw
protected:
int dl; // liczba bitéw
slowo *tab; // tablica bitéw
public:
explicit tab_bit (int rozm); // wyzerowana tablica bitow [0O...rozm]
explicit tab_bit (slowo tb); // tablica bitéw [0...rozmiarSlowa]
// zainicjalizowana wzorcem
tab_bit (const tab_bit &tb); // konstruktor kopiujacy
tab_bit (tab_bit &&tb); // konstruktor przenoszacy
tab_bit & operator = (const tab_bit &tb); // przypisanie kopiujace
tab_bit & operator = (tab_bit &&tb); // przypisanie przenoszace
“tab_bit (); // destruktor
private:
bool czytaj (int i) const; // metoda pomocnicza do odczytu bitu
bool pisz (int i, bool b); // metoda pomocnicza do zapisu bitu
public:
bool operator[] (int i) comnst; // indeksowanie dla statych tablic bitowych
ref operator[] (int i); // indeksowanie dla zwyklych tablic bitowych
inline int rozmiar () const; // rozmiar tablicy w bitach
public:
// operatory bitowe: | i |=, & 1 &=, ~ i "= oraz !
public:
// zaprzyjaZnione operatory strumieniowe: << i >>

};

Klasa ref jest klasa pomocnicza, ktorej zadaniem jest zaadresowanie pojedynczego bitu w
tablicy — zastanéw sie jak powinna ona by¢ zaimplementowana.

Do kompletu podefiniuj operatory koniunkeji, alternatywy, réznicy symetrycznej w potacze-
niu z przypisaniem oraz operator negacji, ktére beda wykonywaé dziatania na catych tablicach
bitéw. Nie zapomnij tez o operatorach czytania ze strumienia wejSciowego i pisania do strumienia
wyjéciowego. Niektore operatory powinny sie przyjazni¢ z klasa tab_bit a pozostate powinny
by¢ jej sktadowymi.

Na koniec napisz program, ktéry rzetelnie przetestuje klase tab_bit (operacje na poszczegdl-
nych bitach tablicy oraz na calych tablicach bitéw).

Podpowiedz.
W funkcjach sktadowych i w konstruktorach zglaszaj btedy za pomocs instrukeji throw.

Elementy w programie, na ktére nalezy zwracaé¢ uwage.

e Podzial programu na plik nagtéwkowy (np. tabbit.hpp) z definicja kasy reprezentujacej
tablice bitéw, plik zrédlowy (np. tabbit.cpp) z definicja funkcji sktadowych dla tej tablicy
oraz plik Zrédlowy (np. main.cpp) z funkcja main() testujacej tablice bitow.

e Klasa opakowujaca tablice bitéw ma by¢ inicjalizowana na kilka réznych sposobow: kon-
kretna pojemnoscig, wzorcem bitéw w stowie typu uint64_t, przez skopiowanie z innej
tablicy bitéw (konstruktor kopiujacy i przenoszacy), za pomoca listy wartosci poczatko-
wych (za pomocg initalizer list<>).

e Operator indeksowania korzystajacy z pomocniczej klasy adresujacej pojedyncze bity.

e W funkcji main() nalezy rzetelnie przetestowaé wszystkie zaprogramowane operatory.

