
laboratorium: zadanie 5 termin: 6–9 kwietnia 2020 r.

kurs języka C++
tablica bitów

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Ilościowym aspektem informacji zajmuje się statystyczno–syntaktyczna teoria informacji Har-
tleya i Shannona. Miary ilości informacji są w niej oparte na prawdopodobieństwie zajścia zda-
rzenia. Jako miarę ilości informacji przyjmuje się wielkość niepewności, która została usunięta
w wyniku zajścia zdarzenia (otrzymania komunikatu). Zdarzenia (komunikaty) mniej prawdo-
podobne dają więcej informacji.
Bit to najmniejsza jednostka informacji potrzebna do określenia, czy zdarzenie zaszło czy

też nie. Bit może przyjąć jedną z dwóch wartości, które zwykle określa się jako 0 (zero) i 1
(jeden), choć można przyjąć dowolną inną parę wartości, na przykład prawda i fałsz albo tak i
nie; w pierwszym przypadku bit jest tożsamy z cyfrą w systemie dwójkowym.

Zadanie.

Zdefiniuj klasę tab bit reprezentującą tablicę bitów. Najprościej implementuje się taką struk-
turę danych za pomocą zwykłej tablicy typu uint16 t[], przeznaczając na zapamiętanie bitu
całe słowo. Jest to rozwiązanie proste, ale bardzo rozrzutne co do zużywanej pamięci — tablica
bitów pamiętana w ten sposób jest kilanaście razy obszerniejsza niż potrzeba. A więc takie
rozwiązanie nas nie satysfakcjonuje, szczególnie gdy trzeba posługiwać się w programie wieloma
dużymi tablicami (chodzi o tablice przechowujące tysiące a nawet miliony bitów).
Należy zatem tak zaprojektować tablicę bitów, aby przydzielona pamięć była wykorzystana

co do bitu (modulo rozmiar słowa). W klasie tab bit zdefiniuj operator indeksowania, który
umożliwiałby zarówno czytanie z tablicy, jak również pisanie do niej. Oto fragment kodu, który
powinien się skompilować i uruchomić:

tab_bit t(46); // tablica 46-bitowa (zainicjalizowana zerami)

tab_bit u(45ull); // tablica 64-bitowa (sizeof(uint64_t)*8)

tab_bit v(t); // tablica 46-bitowa (skopiowana z t)

tab_bit w(tab_bit(8){1, 0, 1, 1, 0, 0, 0, 1}); // tablica 8-bitowa (przeniesiona)

v[0] = 1; // ustawienie bitu 0-go bitu na 1

t[45] = true; // ustawienie bitu 45-go bitu na 1

bool b = v[1]; // odczytanie bitu 1-go

u[45] = u[46] = u[63]; // przepisanie bitu 63-go do bitow 45-go i 46-go

cout<<t<<endl; // wysietlenie zawartości tablicy bitów na ekranie

Ponieważ nie można zaadresować pojedynczego bitu (a tym samym nie można ustamowić
referencji do niego), więc trzeba się posłużyć specjalną techniką umożliwiającą dostęp do poje-
dynczego bitu w tablicy. Robi się to poprzez zastosowanie obiektów niewidocznej dla programisty
klasy pomocniczej ref, potrafiącej odczytać i zapisać pojedynczy bit w tablicy.

1

class tab_bit

{

typedef uint64_t slowo; // komorka w tablicy

static const int rozmiarSlowa; // rozmiar slowa w bitach

friend istream & operator >> (istream &we, tab_bit &tb);

friend ostream & operator << (ostream &wy, const tab_bit &tb);

class ref; // klasa pomocnicza do adresowania bitów

protected:

int dl; // liczba bitów

slowo *tab; // tablica bitów

public:

explicit tab_bit (int rozm); // wyzerowana tablica bitow [0...rozm]

explicit tab_bit (slowo tb); // tablica bitów [0...rozmiarSlowa]

// zainicjalizowana wzorcem

tab_bit (const tab_bit &tb); // konstruktor kopiujący

tab_bit (tab_bit &&tb); // konstruktor przenoszący

tab_bit & operator = (const tab_bit &tb); // przypisanie kopiujące

tab_bit & operator = (tab_bit &&tb); // przypisanie przenoszące

~tab_bit (); // destruktor

private:

bool czytaj (int i) const; // metoda pomocnicza do odczytu bitu

bool pisz (int i, bool b); // metoda pomocnicza do zapisu bitu

public:

bool operator[] (int i) const; // indeksowanie dla stałych tablic bitowych

ref operator[] (int i); // indeksowanie dla zwykłych tablic bitowych

inline int rozmiar () const; // rozmiar tablicy w bitach

public:

// operatory bitowe: | i |=, & i &=, ^ i ^= oraz !

public:

// zaprzyjaźnione operatory strumieniowe: << i >>

};

Klasa ref jest klasą pomocniczą, której zadaniem jest zaadresowanie pojedynczego bitu w
tablicy — zastanów się jak powinna ona być zaimplementowana.
Do kompletu podefiniuj operatory koniunkcji, alternatywy, różnicy symetrycznej w połącze-

niu z przypisaniem oraz operator negacji, które będą wykonywać działania na całych tablicach
bitów. Nie zapomnij też o operatorach czytania ze strumienia wejściowego i pisania do strumienia
wyjściowego. Niektóre operatory powinny się przyjaźnić z klasą tab bit a pozostałe powinny
być jej składowymi.
Na koniec napisz program, który rzetelnie przetestuje klasę tab bit (operacje na poszczegól-

nych bitach tablicy oraz na całych tablicach bitów).

Podpowiedź.

W funkcjach składowych i w konstruktorach zgłaszaj błędy za pomocą instrukcji throw.

Elementy w programie, na które należy zwracać uwagę.

• Podział programu na plik nagłówkowy (np. tabbit.hpp) z definicją kasy reprezentującej
tablicę bitów, plik źródłowy (np. tabbit.cpp) z definicją funkcji składowych dla tej tablicy
oraz plik źródłowy (np. main.cpp) z funkcją main() testującej tablicę bitów.

2

• Klasa opakowująca tablicę bitów ma być inicjalizowana na kilka różnych sposobów: kon-
kretną pojemnością, wzorcem bitów w słowie typu uint64 t, przez skopiowanie z innej
tablicy bitów (konstruktor kopiujący i przenoszący), za pomocą listy wartości początko-
wych (za pomocą initalizer list<>).

• Operator indeksowania korzystający z pomocniczej klasy adresującej pojedyncze bity.

• W funkcji main() należy rzetelnie przetestować wszystkie zaprogramowane operatory.

3

