Kurs jezyka C++

4. Przecigzanie operatorow

Spis tresci

» Funkcje zaprzyjaznione

» Przecigzanie operatorow

» Operatory sktadowe w klasie

» Zaprzyjaznione funkcje operatorowe
» Operatory predefiniowane

» Niestatyczne operatory sktadowe

» Operatory new i delete

» Operatory strumieniowe << i >>

Funkcje zaprzyjaznione

Problem z kwiatkami w domu w czasie dalekiej podrozy stuzbow

Funkcja, ktora jest przyjacielem klasy, ma dostep do wszystkich j
prywatnych i chronionych sktadowych.

To klasa deklaruje, ktore funkcje sa jej przyjaciotmi.

Deklaracja przyjazni moze sie pojawic w dowolnej sekcji i jest
poprzedzona stowem kluczowym friend.

Funkcje zaprzyjaznione

» Przyktad klasy z funkcja zaprzyjazniona:

// klasa z funkcja zaprzyjazniona
class pionek
{

int x, v;

/] ..

friend void raport (const pionek &p);

by
// funkcja, ktdéra jest przyjacielem klasy
vold raport (const pionek &p)

{
cout << "(" << p.x << ", " <K< p.y << !

}

Funkcje zaprzyjaznione

» Nie ma znaczenia, w ktorej sekcji (prywatnej,
chronionej czy publicznej) pojawi sie deklaracja
przyjazni.

» Funkcja zaprzyjazmona z klasa nie jest je]
sktadowa, nie moze uzywac wskaznika this w

stosunku do obiektow tej klasy.

» Jedna funkcja moze sie przyjaznic z kilkoma
klasami.

» Istotg przyjazni jest dostep do niepublicznych
sktadowych w klasie - sensowne jest deklarow,
przyjazni, gdy dana funkcja pracuje z obie
klasy.

Funkcje zaprzyjaznione

» Mozna takze umiesci¢ w klasie nie tylko
deklaracje funkcji zaprzyjaznionej, ale
rowniez jej definicje; tak zdefiniowana
funkcja:

» jest nadal tylko przyjacielem klasy;
» jest inline;

» moze korzystac z typow zdefiniowanych w
klasie.

» Funkcja zaprzyjazniong moze byc funkcja
sktadowa z innej klasy.

Klasy zaprzyjaznione

» Mozemy w klasie zadeklarowac przyjazn z
inng klasa, co oznacza, ze kazda metoda tej
innej klasy jest zaprzyJazmona Z klasg
pierwotna.

» Przyktad:

class A

{

friend class B;

// ..
b
» Przyjazn jest jednostronna.
» Przyjazn nie jest przechodnia.

» Przyjazni sie nie dziedziczy.

Klasy zaprzyjaznione

» Dwie klasy moga sie przyjaznic z
wzajemnoscia:

class A;
class B;

class B {
friend class A;

/]
}

class A {
friend class BR;
} /]

Po co przecigzac operatory?

» Porownaj dwa wyrazenia:
y = ar*x+tb;
y = dodaj (pomnoz (a,x),b);

» A teraz wyobraz sobie funkcyjny zapis takiego wyrazenia:
y = (a*c-b*d)/ (a*at+b*b);

» Operatory tylko upraszczaja notacje wyrazen.

Przyktad
przecigzenia operatora

>

Przyktad klasy pamietajacej liczbe zespolona, dla ktorej
przecigzymy operator dodawania:
class comp

{

public:
const double re, im;

public:
comp (double r=0, double 1=0) : re(r), im(1
comp (const comp &c) : re(c.re), 1im(c.im)

i

Przyktad operatora dodawania dla obiektow z liczbami zespolon

comp operator + (comp a, comp b)

{

return comp(a.ret+b.re, a.imtb.im);
}

Przyktad uzycia operatora dodawania liczb zespolonych:
comp a(2), b(3,5), ¢c = a + b;

Ogolne zasady przecigzania
operatorow

» Mozna tylko przeciazac operatory, nie wolno
definiowac nowych.

» Przy przecigzaniu operatora nie mozna zmienic
jego priorytetu, arnosci ani tgcznosci.

» Co najmniej jeden z argumentow przecigzaneg
operatora musi sie odnosic do klasy (nie wolno
zmieniac znaczenia operatorow w stosunku do
typow podstawowych).

» Nie wolno uzywac argumentow domyslnych w
operatorach.

Przeciazanie operatorow

» Nazwa funkcji operatorowej to operator @, gdz
@ to symbol (nazwa) operatora.

» Mozna deklarowac funkcje definiujace znaczeni

nastepujacych operatorow:
+ - * /5 N &] <LK >>

t= —= *= [= &= "= &= |= <<= >>=
= ~ | < > <K= >= == 1=,

& ||+t —= => =>% [] ()

new new/|[] delete delete]]

» Mozna definiowac zarowno operatory
dwuargumentowe jak i jednoargumentowe
(prefiksowe i postfiksowe).

Przeciazanie operatorow

» Nie mozna definiowac nastepujacych operatorow:
?: (operator warunkowy)
: rez,olucia zasiegu)
. (wybor sktadowej) o
. * (wybor sktadowej za pomoca wskaznika do

sktadowej)

» Nie mozna tez przecigzyc operatora, ktory podaj
rozmiar obiektu sizeof oraz operatora
rozmieszczenia danych w pamieci alignof.

» Nie wolno przecigzac¢ operatorow rzutowania:
static cast, dynamic cast, const cast]
relnterpret cast.

» Nie wolno definiowac operatorow # i ##, ktore s
poleceniami dla prekompilatora.

Zaprzyjaznione
funkcje operatorowe

>

>

Bardzo czesto funkcje operatorowe siggajg do ukrytych skta
klasie - wtedy wygodnie jest zadeklarowac w klasie przyjazn
operatorem.

Przyktad:

class comp {
friend comp operator + (comp a, comp b);
double re, im;

public:
comp (double r=0, double 1=0) : re(r),
/..

im (1)

i

comp operator + (comp a, comp b) {
return comp(a.retb.re, a.imt+b.im);

}

comp x(3, 7), y(5);
X =X t+ y;

x =X + 8.5;

x = -=-7.5 + x;

Operatory sktadowe w klasie

» Mozna zdefiniowac operator jako funkcje sktadowa w klasie
pierwszym niejawnym argumentem bedzie obiekt tej klasy.
» Przyktad:

class comp {
double re, im;

public:
7?mp (double r=0, double 1=0) : re(r), 1im (i)
comﬁ operator- (comp b);
comp operator- ();

b

comp comp::operator- (comp b) {

return comp (re-b.re, 1m-b.im);
}
comp comp::operator—- () {
return comp (-re, -1im)
}

comp x(3, 7), y(5);

X = -X - y;

X =x — 8.5;

// x = 7.5 - x; // btad

.o
14

Symboliczne i funkcyjne
wywotanie funkcji operatorowej

» Niech dana bedzie funkcja operatorowa operator@. Wtedy mo
wywotac na dwa sposoby:
x @ y // wywotanie symboliczne
operator@(x, y) // wywotanie funkcyjne

» Niech dana bedzie sktadowa funkcja operatorowa operator @. W
mozemy ja wywotac¢ na dwa sposoby:
x @ y // wywotanie symboliczne
x.operator@ (y) // wywotanie funkcyjne

Operatory predefiniowane

» Jest kilka operatorow, ktorych znaczenie jest tak intuicyjne, ze
automatycznie wygenerowane dla kazdej klasy:

» przypisanie =,
» jednoargumentowy operator pobrania adresu &,
» separacja kolejnych wyrazen , (przecinek),

» tworzenie i usuwanie obiektow new, new[], delete, delete[].

» Mozna zdefiniowac wtasne wersje wymienionych operatordow, jesli ch
zmienic ich domyslne zachowanie.

Niestatyczne operatory sktadow

» Istniejg cztery operatory, ktore musza byc niestatycznymi opera
sktadowymi:
przypisanie =,
indeksowanie [],
wywotanie funkcji (),
odwotanie do sktadowej ->.

Operator przypisania

» Jesli nie zdefiniujemy przypisania kopiujacego, to wygeneruje go
kompilator (o ile nie ma w naszej klasie pol statych).

» Postaé operatora przypisania kopiujacego:
K & K::operator= (K &k) {/*.*/}
K & K::operator= (const K &k) {/*..*/}

» Domyslny operator przypisania kopiujacego kopiuje sktadnik po sktad
Ale czasami takie kopiowanie nie jest dobre!

» Operator przypisania mozna przeciazac.

» Cechy prawidtowo napisanego operatora przypisania:
» nie zmienia stanu wzorca, z ktorego kopiuje;
» sprawdza, czy nie kopiuje sam na siebie;
» likwiduje biezace zasoby (podobnie do destruktora);
» tworzy nowy stan obiektu na podobienstwo wzorca (podobnie jak konstruktor kopIUchy).

» Przyktad:
K & K::operator= (const K &k)
{
1f (&k==this) return *this;
this->~K () ;
// kopiowanie stanu z obiektu k
return *this;

Operator indeksowania []

» Operator odwotania do tablicy mozna zaadoptowac do
odwotywania sie do elementow kolekcji wewnatrz obiektu.

» Aby odwotanie indeksowe mogto stac¢ po obu stronach operatora
przypisania musimy zwracac referencje do elementu kolekcji.

» Indeksowac mozna dowolnym typem (niekoniecznie int).

\

Operator wywotania funkcji ()

» Operator wywotania funkcji () moze miec dowol
liczbe argumentow (rowmez wiecej niz dwa).

» Operator ten moze miec argumenty domnieman
» Operator ten mozna przecigzac wiele razy w kl

» Wywotuje sie go na rzecz jakiegos obiektu.
Przyktad:
class K;
K ay;
/] ..
a(); // a.operator () ();
/] ..
a(l,2,3); // a.operator() (1,2,3);

Operator wskazywania
na sktadowg ->

» Operator ten wywotujemy na obiekcie (a nie na wskazniku do da
obiektu).

» Operator ten musi zwracac albo wskaznik albo obiekt takiej klasy,
ma przetadowany operator —>.

» Wywotanie:
obiekt->skladowa

Interpretacja wywotania:
(obiekt.operator->())->skladowa

Postinkrementacja
i postdekrementacja

» Operatory ++ i —-— moga byc zarowno prefiksowe jak i
postfiksowe; prefiksowe operatory ++ i —- definiuje sie
jednoargumentowe (naturalna definicja) a postfiksowe j
dwuargumentowe:
class K
{
public:

// operatory
K & operator
K & operator
// operatory

K operator ++
K operator --

// ..
'

prefiksowe
t+ ()7
-= ()7
postfiksowe
(1nt);
(1nt) ;

Operatory new 1 new []
oraz deleteldelete]]

» W klasie mozna zdefiniowac wtasne operatory new i delete;
jesli sa one zdefiniowane to kompilator uzyje wtasnie ich (a
globalnych operatorow) do przydzielania i Zwalniania pamiec

» Definicja operatorow new i delete musi wygladac
nastepujaco:
?lass K
public:
// operator new
static void* operator new (size t s);
static void* operator new[] (size t s);
// operator delete -
static void operator delete (void *p);
i;atic vold operator delete[] (void *p);
I ,
» W definicji wtasnych operatorow new i delete mozna
odwotywac sie do globalnych operatorow przydzielania
zwalniania pamieci : :new i : :delete.

» Operator new ma przydzielic pamiec dla .
pojedynczego obiektu a operator new [] dla tablic
obiektow.

» Operatory new i new[] muszg byc statyczne w
klasie.

» Operatory new i new[] zwracajg jako wynik warto
typu void*.

» Operatory new i new[] przyjmuja jako argument
wartosc typu size t %W przypadku new ma to byc
rozmiar jednego obiektu a w przypadku new []
rozmiar wszystkich obiektow tacznie); argument
jest do tych operatorow przekazywany niejawn
pomoca operatora sizeof).

» Gdy zabraknie pamieci nalezy zgtosic wyjat
bad alloc.

\

Operatory delete idelete]

» Operator delete ma zwolnic pamiec dla
pojedynczego obiektu a operator delete[] dla
tablicy obiektow.

» Operatory delete i delete[] musza byc statycz
w klasie.

» Operatory delete i delete[] nie zwracajg wyniku
(sq typu void).

» Operatory delete idelete[] przyjmuja jako
argument wskaznik typu voidx.

Globalne operatory new i new []
oraz deleteldelete]]

» Mozna zdefiniowac wtasne wersje globalnych operatorow new i
oraz deleteidelete]] ale:

» W ten sposob catkowicie niszczymy oryginalne wersje tych operatorow;

» operator : :new jest uzywany w bibliotekach standardowych do tworze
obiektow globalnych (takich jak cin czy cout) jeszcze przed uruchomie
funkcji main ().

» najczesciej wtasne definicje tych operatorow to btad projektowy, ktory m
doprowadzic¢ do katastrofy w dziataniu programu...

\

Operatory new[] 1 delete[]

» Operator new[] przydziela pamiec dla tablicy
obiektow. Wszystkie obiekty w nowo utworzonej
tablicy beda zainicjalizowane konstruktorem
domyslnym (pamietaj o zdefiniowaniu konstruk
domyslnego w klasie, ktorej obiekty beda
wystepowac w tablicach).

» Operator delete[] zwalnia pamiec przydzielon
dla tablicy obiektow. Przed zwolnieniem tej
pamieci dla wszystkich obiektow dostanie
wykonany destruktor.

Operatory << i >>
do pracy ze strumieniami

» Wygodnie jest zdefiniowac operatory << i >> do pracy
strumieniami; aby mozna byto pracowac z takimi opera
W Sposob kasRadowy powinny one byc zdefiniowane jak
funkcje zewnetrzne w stosunku do klasy i zwracac refer
do strumienia, na ktorym dziataja:

?lass K
// operator czytajacy dane ze strumienia
friend
lstream& operator >>
(istream &is, K &k);
// operator piszacy dane do strumienia
friend
ostreamé& operator <<
(ostream &os, const K &k);

/]
'

