
Exercise 3: Queue data structure using array  

Deadline: 10th April 2021 

  

A queue is a collection of entities that are maintained in a sequence and can be modified by the 

addition of entities at one end of the sequence and the removal of entities from the other end of the 

sequence.  

The operations of a queue make it a first-in-first-out (FIFO) data structure. In a FIFO data structure, 

the first element added to the queue will be the first one to be removed. This is equivalent to the 

requirement that once a new element is added, all elements that were added before have to be 

removed before the new element can be removed. 

Task 

Define the classes queue to be a FIFO structure – the element that was added to this structure 

earliest will be pulled from it the fastest. This structure is to be used to store strings. 

The functionality of the queue should be very simple: put the string into the queue (method void 

enqueue(string)), take the string from the queue (method string dequeue()), check 

what the string is at the beginning of the queue (method string front()) and ask for the 

number of all items in the queue (method int size()). 

Design this class using one dimensional array allocated on the heap by operator new[].The 

destructor must free the memory allocated to this array by operator delete[]. Implementing the 

queue, use the wrapping in the array – the first element of the array follows the last one. 

The capacity of the queue should be specified in the constructor – define a private field capacity 

to remember the maximum size of the queue. You will also need information about the place where 

the queue begins and the number of items currently stored in the queue – define a private fields 

start and length to remember this parameters. 

The class queue should have five constructors: a constructor with a given capacity, a default 

constructor (without any arguments), a constructor initializing the queue with a list of strings (using 

initializer_list<string>), a copy constructor and move constructor. To complete the 

copy and move semantics define the appropriate assignment operators (copy and move 

assignments). 

Finally, write an interactive program for testing queue (interpret and execute commands from 

console). The queue object that you will test create on the heap with operator new and remove it 

with operator delete before the program ends! 

Whenever we encounter any errors, ambiguities or contradictions in the program, this should be 

signaled by an exception. 

 


