
Exercise 6: Array of bits

Deadline: 30th April 2021

Information theory is the scientific study of the quantification, storage, and communication of

information. The field was fundamentally established by the works of Harry Nyquist and Ralph

Hartley in the 1920s, and Claude Shannon in the 1940s. The field is at the intersection of probability

theory, statistics, computer science, statistical mechanics, information engineering, and electrical

engineering.

The bit is a basic unit of information in computing and digital communications. The bit represents a

logical state with one of two possible values. These values are most commonly represented as either

1 or 0, but other representations such as true/false, yes/no, +/−, or on/off are common.

Task

Define the class bitarray for representing an array of bits. The array of bits should be designed in

such way that all the bits allocated are used (modulo word size). In the bitarray class, define an

index operator that would allow both reading from and writing single bits to it. Here's a piece of
code that should compile and run:

 bitarray t(53); // array of 53 bits (array initialized with 0)

 bitarray u(37ull); // array of 64 bits (sizeof(uint64_t)*8)

 bitarray v(t); // array of 53 bits (copy constructor)

 bitarray w(bitarray(8){1, 0, 1, 1, 0, 0, 0, 1});

 // array of 8 bits (move constructor)

 v[0] = 1; // assignment 1

 t[43] = false; // assignment 0

 bool b = v[1]; // read v[1]

 u[17] = u[29] = u[63]; // cascading assignment

 cout << t << endl; // writing on console

You cannot address a single bit (and thus you cannot establish a reference to it), so you have to use a

special technique to access a single bit in the array. It is enough to use objects of the ref auxiliary
class, which can read and write a single bit in the array.

 class bitarray {

 typedef uint64_t word; // one cel in array

 static const int wordsize; // word size = 64 bits

 friend istream & operator >> (istream &we, bitarray &arr);

 friend ostream & operator << (ostream &wy, const bitarray &arr);

 class ref; // auxiliary class

 protected:

 int len; // numer of bits

 word *arr; // array of bits

 public:

 explicit bitarray(int siz);

 explicit bitarray(word w);

 bitarray(const bitarray &arr); // copy constructor

 bitarray(bitarray &&arr); // move constructor

 bitarray& operator= (const bitarray &arr); // copy assignment

 bitarray& operator= (bitarray &&arr); // move assignment

 ~bitarray(); // destructor

 private:

 bool read(int i) const; // read single bit

 bool write(int i, bool b); // write single bit

 public:

 bool operator[] (int i) const; // index operator

 ref operator[] (int i); // index operator

 inline int size() const; // size of array

 public:

 // bitwise operators: |, |=, &, &=, ^, ^=, !

 };

Complete the definition of the bitarray class. The ref class is an auxiliary class that is to address

a single bit in the array. Place the class bitarray in the namespace data_structures.

Finally write a program, which reliably tests the bitarray class. All objects in your program should

be created on the heap (use operator new).

Whenever you encounter any errors, ambiguities or contradictions in the program, this should be

signaled by an exception.

