
Exercise 7: Array of floating point numbers

Deadline: 7th May 2021

Resource acquisition is initialization (RAII) is a programming idiom used in several object-oriented,

statically-typed programming languages to describe a particular language behavior. In RAII, holding a

resource is a class invariant, and is tied to object lifetime: resource allocation (or acquisition) is done

during object creation (specifically initialization), by the constructor, while resource deallocation

(release) is done during object destruction (specifically finalization), by the destructor. In other

words, resource acquisition must succeed for initialization to succeed. Thus the resource is

guaranteed to be held between when initialization finishes and finalization starts (holding the

resources is a class invariant), and to be held only when the object is alive. Thus if there are no

object leaks, there are no resource leaks.

Task 1

Define the class realarray for representing an array of floating-point numbers according to the
design pattern RAII. An array of the given size should be created on the heap while the constructor is

running and removed from the heap in the destructor. Implement copy and move semantics in the

realarray class. Place the class definition in the calc namespace.

 class realarray {

 int len; // numer of bits

 double *arr; // array of bits

 public:

 explicit realarray(int siz); // base constructor

 realarray(const realarray &arr); // copy constructor

 realarray(realarray &&arr); // move constructor

 realarray& operator= (const realarray &arr); // copy assignment

 realarray& operator= (realarray &&arr); // move assignment

 ~realarray(); // destructor

 // ...

 };

Raise an exception invalid_argument when the size of the array passed to the constructor is

not a positive number. Use uniform initialization to clear the array (0 in each cell).

Define index operators in the wrapper class that return a value for constant arrays and a cell

reference for mutable arrays, respectively. When the index is outside the acceptable range, throw an

exception out_of_range.

Thoroughly test the functionality of the wrapper class, with particular emphasis on the exceptions

reported.

Task 2

Complete the definition of the wrapper realarray with an argumentless constructor that will
create an array of floating-point numbers with the maximum possible size, which is the power of 2.

Use the new operator with the nothrow parameter. This constructor should initialize the created

array with random values from the interval [0, 1).

What was the size of the array you created?

Task 3

Complete the definition of the wrapper realarray with a constructor that will create and initialize

an array based on a list of values initializer_list<double>.

Next, define a function (or multiplication operator) that will calculate the scalar product of two

arrays of the same size. Insert an assertion into the function that will check that the lengths of both

arrays are really the same.

Did the assertion work when you provided arrays of different sizes? How to disable assertions?

