
Exercise 9: Singly linked list template

Deadline: 28th May 2021

A singly linked list is a type of linked list that is unidirectional, that is, it can be traversed in only one

direction from head to the last node (tail). Each element in a linked list is called a node. A single node

contains data and a pointer to the next node which helps in maintaining the structure of the list. The

first node is called the head; it points to the first node of the list and helps us access every other

element in the list. The last node, also sometimes called the tail, points to NULL which helps us in

determining when the list ends.

Task

Define an class template list<T> for a singly linked list. The definition of the list should be written
in accordance with the art of programming dynamic data structures - define a fully functional list

node node<T> as a private class nested in the list<T> wrapper class, having a user-friendly

interface with dictionary operations (inserting an element into a given position, deleting an element

with a given value, searching for element, counting all items, etc).

 template<typename T>

 class list {

 class node {

 // ...

 };

 private:

 node *head;

 public:

 // ...

 };

Place the class template definition in the calc namespace.

List objects should be copyable (copy constructor, copy assignments, move constructor, and move

assignment). Complete the list definition with initialization through initializer_list<T>.

Don't forget the operator << to write the whole list to the output stream.

Next, define two function templates for working with lists: issorted() to check if the list is

ordered and sort() to order all element in the list. Place these definitions in the calc namespace
too. The templates should have two parameters: the type of data stored in the list and the trait

implementing the comparison of two elements. Trait should be the default parameter in the

templates, set to a function object that implements comparison by operator <. Also define another

trait that implements the comparison by operator >. Make sure that you specialize traits for

pointers, in particular for the const char*.

Finally, write a program that reliably test your list implementation. The program should interact with

the user.

