
laboratorium: zadanie 7 termin: 4–7 maja 2021 r.

kurs języka C++
tablica liczb zmiennopozycyjnych

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Prolog.

Resource acquisition is initialization (pozyskiwanie zasobu poprzez inicjalizację), w skrócie
RAII, to popularny wzorzec projektowy w języku C++. Technika ta jest realizowana za pomocą
obiektów opakowujących zasoby (ang. wrapper) i łączy przyjęcie określonego zasobu z konstrukcją
opakowania (inicjalizacja za pomocą konstruktora) a zwolnienie zasobu z destrukcją opakowania
(automatycznie uruchamiany destruktor przed likwidacją obiektu). Ponieważ zagwarantowane
jest automatyczne wywołanie destruktora, gdy zmienna opuszcza zasięg swojej deklaacji, to
w konsekwencji zasób zostanie zwolniony w momencie, gdy skończy się czas życia zmiennej
opakowującej zasób — stanie się tak również w przypadku zgłoszenia wyjątku (podczas zwijania
stosu).
Techika RAII jest kluczową koncepcją przy pisaniu kodu odpornego na błędy. Mariusz

Jaskólka na swoim blogu programistycznym pisze tak:

Bardzo popularne dziś podejście do zarządzania pamięcią, jakim jest obowiązkowe
użycie odśmiecacza pamięci (ang. Garbage Collector) działającego w tle w języku
takim jak C++ nie ma miejsca, ponieważ wiąże się z narzutem wydajnościowym, co
z kolei kłóci się z koncepcją Zero Overhead Principle. Dodatkowo mechanizm ten
dotyczy tylko jednego rodzaju zasobu — pamięci. I choć jest to zasób wykorzysty-
wany przez programy najczęściej, to istnieją jednak inne, które również wymagają
starannego ich zwalniania i mechanizmów, które to ułatwiają.

Zadanie 1.

Zdefiniuj klasę opakowującą dla tablicy liczb zmiennopozycyjnych double[] zgodnie ze wzor-
cem RAII. Tablica o zadanym rozmiarze ma być utworzona na stercie podczas pracy konstruktora
a usunięta ze sterty w destruktorze. Klasa opakowująca tab dbl powinna implementować se-
mantykę kopiowania i przenoszenia.

class tab_dbl

{

double *tab; // tablica liczb zmiennopozycyjnych

int dl; // rozmiar tablicy

public:

explicit tab_dbl(int rozm); // wyzerowana tablica liczb

tab_dbl(const tab_dbl &t); // konstruktor kopiujący

1



tab_dbl(tab_dbl &&t); // konstruktor przenoszący

tab_dbl& operator = (const tab_dbl &t); // przypisanie kopiujące

tab_dbl& operator = (tab_dbl &&t); // przypisanie przenoszące

~tab_dbl(); // destruktor

// ...

};

Definicję klasy umieść w przestrzeni nazw obliczenia.
Użyj jednolitej inicjalizacji do wyzerowania tablicy na początku jej istnienia. Zgłoś wyjątek

invalid argument, gdy przekazany do konstruktora rozmiar tablicy nie będzie liczbą dodatnią.
W klasie opakowującej zdefiniuj także operatory indeksowania, zwracające odpowiednio war-

tość dla tablic stałych i referencję do komórki w przypadku tablic modyfikowalnych. Gdy indeks
będzie miał wartość spoza dopuszczalnego zakresu zgłoś wyjątek out of range.
Rzetelnie przetestuj całą funkcjonalność opakowania na tablicę ze szczególnym uwzględnie-

niem zgłaszanych wyjątków.

Zadanie 2.

Uzupełnij definicję opakowania tab dbl o konstruktor bezargumentowy, który utworzy tablicę
liczb zmiennopozycyjnych o maksymalnym możliwym rozmiarze, będącym potęgą 2. Wykorzy-
staj operator new z parametrem nothrow. Konstruktor ten powinien zainicjalizować utworzoną
tablicę losowymi wartościami z zakresu [0, 1).
Tablicę o jakim rozmiarze udało Ci się utworzyć?

Zadanie 3.

Uzupełnij definicję opakowania tab dbl o konstruktor, który utworzy i zainicjalizuje tablicę
w oparciu o listę wartośći initializer list<double>.
Następnie zdefiniuj funkcję (albo operator mnożenia), która będzie liczyć iloczyn skalarny

dwóch tablic o identycznych rozmiarach. Wstaw do funkcji asercję sprawdzającą, czy długości
obu tablic są takie same.
Czy asercja zadziałała, gdy podałeś tablice o różnych rozmiarach? Jak wyłączyć asercje?

Istotne elementy programu.

• Podział programu na pliki nagłówkowe i pliki źródłowe (wyodrębniony osobny plik z funkcją
main() z testami).

• Użycie przestrzeni nazw obliczenia.

• Implementacja semantyki kopiowania i przenoszenia.

• Operatory indeksowania.

• Zgłaszanie wyjątków i ich wyłapywanie w testach.

• Posługiwanie się asercjami.

2


