Kurs jezyka C++

13. Algorytmy



Spis tresci

Zakresy

Parametry funkcyjne
Klasyfikacja algorytmow
Algorytmy niemodyfikujace
Algorytmy modyfikujace
Algorytmy usuwajace
Algorytmy mutujace
Algorytmy sortujace

vV v vV vV v v v v Y

Algorytmy pracujace na posortowanych danych




Lakresy w algorytmach STL

» W pliku nagtowkowym <algorithm> zdefiniowanych
jest okoto 100 standardowych algorytmoéw dziatajacych
na zakresach definiowanych przez pary iteratorow (dla
wejscia) lub pojedyncze iteratory (dla wyjscia).

» Niektore algorytmy (na przyktad sort () ) wymagaja
iteratorow o dostepie swobodnym, a inne (na przyktad
find () ) przegladaja sekwencje po kolei, wiec
wystarcza im iterator jednokierunkowy.

» Wiele algorytmow fakt nieodnalezienia elementu
standardowo oznacza zwroceniem konca zakresu.



Lakresy w algorytmach STL

» Algorytmy pracuja na kolekcjach i na tablicach.

» Argumentami algorytmow STL sg zakresy (iteratory w
kolekcjach albo wskazniki w tablicach)

» Po stronie funkcji wywotujacej lezy obowigzek
zapewnienia poprawnosci zakresow - oznacza to, ze
poczatek musi odnosic sie do wczesniejszego lub tego
samego elementu tego samego kontenera co koniec.

» Algorytmy dziatajg w trybie nadpisywania, a nie
wstawiania - funkcja wywotujaca musi wiec zapewnic,
aby zakresy docelowe posiadaty odpowiedni rozmiar.




Parametry funkcyjne

» Niektore algorytmy umozliwiaja przekazanie operacji
zdefiniowanych przez uzytkownika, ktore sg nastepnie przez nie
wewnetrznie wywotywane.

» Operacje te to funktory - moga by¢ zwyktymi funkcjami lub
obiektami funkcyjnymi lub lambdami.

» Funktory stuzy¢ moga do realizacji nastepujacych zadan:

» predykat jednoargumentowy jako kryterium wyszukiwania lub
wybierania elementow;

» predykat dwuargumentowy jako kryterium sortowania czy
wyszukiwania w uporzadkowanym zbiorze;

» funktor aplikowany do wszystkich elementow z podanego zakresu;

» funktor dla algorytmow numerycznych.



Klasyfikacja algorytmow

» Algorytmy dziela sie na niemodyfikujace (tylko czytajace dane) i
modyfikujace.

» Przeznaczenie algorytmu mozna wywnioskowac po jego nazwie:

» Przyrostek/sufiks if uzywany jest wtedy, gdy istniejg dwie postacie
pewnego algorytmu posiadajace te sama liczbe parametrow, lecz jedna

wymaga podania wartosci (wersja bez przyrostka) a druga funkcji lub
obiektu funkcyjnego (wersja z przyrostkiem). Algorytm £ind () na

przyktad szuka elementu o okreslonej wartosci, podczas gdy algorytm
find 1if () szuka elementu spetniajacego podane kryterium.

» Przyrostek/sufiks copy wskazuje, ze elementy podlegaja nie tylko

manipulacji, lecz rowniez kopiowaniu do zakresu docelowego. Algorytm
reverse () na przyktad odwraca kolejnosc¢ elementow wewnatrz danego

zakresu, podczas gdy algorytm reverse copy () kopiuje elementy w
odwrotnej kolejnosci do innego zakresu.



Algorytmy niemodyfikujgce

» Algorytmy niemodyfikujace nie zmieniajg ani
kolejnosci, ani wartosci przetwarzanych elementow.

» Algorytmy niemodyfikujace wspotpracuja z iteratorami
wejsciowymi i postepujacymi, mozna je wiec wywotac
dla wszystkich kontenerow standardowych.



Algorytm for each

» Algorytm for each () wywotuje wobec kazdego
elementu operacje podang przez funkcje wywotujaca.

» Wywotanie:
for_each(iterator_pocz, iterator_kon, funkcja)

» Algorytm for_each() zwraca obiekt funkcyjny stosowany
do elementow kolekcji.

» Przyktad 1:
void echo (short num) {
cout << num << endl;

}

vector<short> wvect;

for each(vect.begin(), vect.end(), echo);



Algorytm for each

» Przyktad 2:
struct Sum {
vold operator () (int n) { sum += n; }
int sum{0};

b
std: :vector<int> nums{3, 4, 2, 8, 15, 267};

auto print = [] (const inté& n)
{ cout << n << "™ ", };
for each(nums.cbegin(), nums.cend(), print);
cout << '\n';

std::for each (nums.begin(), nums.end(),
[] (int &n) { nt+; });

Sum s = std::for each (nums.begin(), nums.end



Algorytmy niemodyfikujace
wyszukujace

>

Fukcja £ind () znajduje pierwsze wystapienie zadanej
wartosci.

Fukcja £ind end () znajduje ostatnie wystgpienie
zadanego ciggu wartosci.

Fukcja search () znajduje pierwsze wystapienie
zadanego ciggu wartosci.

Fukcja min element () znajduje element o
najmniejszej wartosci.

Fukcja max element () znajduje element o
najwiekszej wartosci.




Algorytmy niemodyfikujgce
wyszukujace

» Przyktad 1:

const int N = 7;

int myints([N] = {3,7,2,5,6,4,9};

// using default comparison:

cout << "The smallest element is "
<< *min element (myints, myints+N) << endl;

cout << "The largest element is "
<< *max_element (myints, myints+N) << endl;




Algorytmy niemodyfikujgce
wyszukujace

» Przyktad 2:
int n;
cin >> n;

std::vector<int> v {0, 1, 2, 3, 4};

auto result = find(begin(v), end(v), n);

if (result != end(v))
cout << "v contains: " << n << '\n';
else

cout << "v does not contain: " << n << '\n';



Algorytmy niemodyfikujace
sprawdzajace

» Fukcja count 1if () zlicza wystapienia zadane]j
wartosci w okreslonym zakresie.

» Fukcja equal () sprawdza czy wartosci z podanych
zakresow sg sobie rowne.

» Fukcja missmatch () znajduje pierwsze wystapienie
roznicy w podanych ciggach wartosci (wynikiem jest
para iteratorow).

» Fukcja is permutation () sprawdza czy jeden zakres
jest permutacja innego zakresu.

» Fukcja is sorted () sprawdza czy jeden zakres jest
posortowany.



Algorytm is prmutation

static constexpr auto vl =
static constexpr auto v2 =

static constexpr auto v3 =

cout << v2 << " 1is a permutation of "

<< is_permutation(vl.begin (), vl

<< v3 << " 1s a permutation of "

<<

{1I2I3I4I5};

{3,5,41112};

{3,5,4,1,1};

.end (),

is permutation(vl.begin(), vl.

<< vl << ": " << boolalpha

v2.begin()) << endl

<< vl << ": " << boolalpha

end (), v3.begin()) << endl;



Algorytmy modyfikujace

» Algorytmy modyfikujace zmieniajg wartosc elementow. M
one bezposrednio modyfikowac elementy z danego zakres
lub modyfikowac je podczas kopiowania do innego zakresu.

» Algorytm for each () dopuszcza operacje modyfikujaca
swoj argument - zatem argument ten musi by¢ przekazywany
przez referencje.

» Przyktad:

vold square (int &elem) { elem *= elem; }

for each(coll.begin(), coll.end(), square);



Algorytmy modyfikujace

Algorytm transform () wykorzystuje operacje zwracajaca
modyfikowany argument (wynik operacji mozna przypisac do
pierwotnego elementu).

Przyktad:

int square (int elem) { return elem * elem; }

transform(coll.begin (), coll.end(),
coll.begin (), square);

Funkcja copy () kopiuje zakres poczawszy od pierwszego
elementu; funkcja copy backward () kopiuje zakres poczawszy
od ostatniego elementu.

Funkcja move () przenosi zakres poczawszy od pierwszego
elementu; funkcja move backward () przenosi zakres poczawszy
od ostatniego elementu.



Algorytmy modyfikujace

» Funkcja fill() zastepuje kazdy element z zadanego
zakresu podang wartoscia.

» Funkcja replace() zastepuje elementy o okreslonej
wartosci z zadanego zakresu inng wartoscia.

» Funkcja generate() zastepuje kazdy element z zadanego
zakresu wartoscig wygenerowanga przez podang funkcje
bezargumentowa.

Funkcja merge() scala dwa zakresy.

» Funkcja swap_ranges() zamienia miejscami elementy z
dwoch zakresow.



Algorytmy usuwajace

» Algorytmy usuwajace s specjalng postacia algorytmow
modyfikujacych. Moga one usuwac elementy albo z
pojedynczego zakresu, albo przy jednoczesnym
kopiowaniu do innego zakresu. Tak jak w przypadku
algorytméw modyfikujacych, jako kontenera
docelowego nie mozemy uzy¢ kontenera asocjacyjnego
ani nieuporzadkowanego.

» Funkcja remove () usuwa elementy o podanej wartosci.

» Funkcja remove if () usuwa elementy spetniajace
zadany predykat.

» Funkcja unique () usuwa elementy powtarzajace sie
(sasiednie).



Algorytmy mutujace

» Algorytmy mutujace to algorytmy, ktore zmieniajg
kolejnosc elementow (a nie ich wartosci) poprzez
operacje przypisania i zamiany ich wartosci.

» Funkcja reverse () odwraca kolejnos¢ elementow.

» Funkcja rotate () przesuwa cyklicznie elementy.

» Funkcja random shuffle () losowo zmienia kolejnosc
elementow.

» Funkcja partition () dzieli zakres na elementy
spetniajace predykat (na poczatku kolekcji) i te
niespetniajace (na koncu kolekcji - funkcja zwraca
iterator do poczatku drugiego przedziatu.



Algorytmy sortujace

» Algorytmy sortujace sa specjalnym rodzajem algorytmu
mutujacego, poniewaz takze zmieniajg kolejnosc
elementow. Sortowanie jest jednak bardziej
skomplikowane niz proste operacje mutujace i zabiera
zwykle wiecej czasu.

» Funkcja sort () sortuje elementy.

» Funkcja stable sort () sortuje elementy w sposob
stabilny.



Algorytmy pracujace na
posortowanych danych

» Algorytmy przeznaczone dla zakresow posortowanych
wymagaja, aby zakresy, na ktorych one operuja, byty
posortowane zgodnie z ich kryterium sortowania.

» Funkcja binary search () sprawdza, czy dany zakres
zawiera okreslony element.



Literatura

» [1] B.Stroustrup: C++. Kompendium wiedzy. Wydanie 4.
Helion 2013. Rozdziat 32: Algorytmy STL.

» [2] N.M.Josuttis: C++. Biblioteka standardowa. Wydanie 2.
Helion 2014. Rozdziat 11: Algorytmy STL.



