
Kurs języka C++
13. Algorytmy

Spis treści

 Zakresy

 Parametry funkcyjne

 Klasyfikacja algorytmów

 Algorytmy niemodyfikujące

 Algorytmy modyfikujące

 Algorytmy usuwające

 Algorytmy mutujące

 Algorytmy sortujące

 Algorytmy pracujące na posortowanych danych

Zakresy w algorytmach STL

 W pliku nagłówkowym <algorithm> zdefiniowanych

jest około 100 standardowych algorytmów działających

na zakresach definiowanych przez pary iteratorów (dla

wejścia) lub pojedyncze iteratory (dla wyjścia).

 Niektóre algorytmy (na przykład sort()) wymagają

iteratorów o dostępie swobodnym, a inne (na przykład
find()) przeglądają sekwencje po kolei, więc

wystarcza im iterator jednokierunkowy.

 Wiele algorytmów fakt nieodnalezienia elementu

standardowo oznacza zwróceniem końca zakresu.

Zakresy w algorytmach STL

 Algorytmy pracują na kolekcjach i na tablicach.

 Argumentami algorytmów STL są zakresy (iteratory w

kolekcjach albo wskaźniki w tablicach)

 Po stronie funkcji wywołującej leży obowiązek

zapewnienia poprawności zakresów – oznacza to, że

początek musi odnosić się do wcześniejszego lub tego

samego elementu tego samego kontenera co koniec.

 Algorytmy działają w trybie nadpisywania, a nie

wstawiania – funkcja wywołująca musi więc zapewnić,

aby zakresy docelowe posiadały odpowiedni rozmiar.

Parametry funkcyjne

 Niektóre algorytmy umożliwiają przekazanie operacji

zdefiniowanych przez użytkownika, które są następnie przez nie

wewnętrznie wywoływane.

 Operacje te to funktory – mogą być zwykłymi funkcjami lub

obiektami funkcyjnymi lub lambdami.

 Funktory służyć mogą do realizacji następujących zadań:

 predykat jednoargumentowy jako kryterium wyszukiwania lub

wybierania elementów;

 predykat dwuargumentowy jako kryterium sortowania czy

wyszukiwania w uporządkowanym zbiorze;

 funktor aplikowany do wszystkich elementów z podanego zakresu;

 funktor dla algorytmów numerycznych.

Klasyfikacja algorytmów

 Algorytmy dzielą się na niemodyfikujące (tylko czytające dane) i

modyfikujące.

 Przeznaczenie algorytmu można wywnioskować po jego nazwie:

 Przyrostek/sufiks _if używany jest wtedy, gdy istnieją dwie postacie

pewnego algorytmu posiadające tę samą liczbę parametrów, lecz jedna

wymaga podania wartości (wersja bez przyrostka) a druga funkcji lub
obiektu funkcyjnego (wersja z przyrostkiem). Algorytm find() na

przykład szuka elementu o określonej wartości, podczas gdy algorytm
find_if() szuka elementu spełniającego podane kryterium.

 Przyrostek/sufiks _copy wskazuje, że elementy podlegają nie tylko

manipulacji, lecz również kopiowaniu do zakresu docelowego. Algorytm
reverse() na przykład odwraca kolejność elementów wewnątrz danego

zakresu, podczas gdy algorytm reverse_copy() kopiuje elementy w

odwrotnej kolejności do innego zakresu.

Algorytmy niemodyfikujące

 Algorytmy niemodyfikujące nie zmieniają ani

kolejności, ani wartości przetwarzanych elementów.

 Algorytmy niemodyfikujące współpracują z iteratorami

wejściowymi i postępującymi, można je więc wywołać

dla wszystkich kontenerów standardowych.

Algorytm for_each

 Algorytm for_each() wywołuje wobec każdego

elementu operację podaną przez funkcję wywołującą.

 Wywołanie:

for_each(iterator_pocz, iterator_kon, funkcja)

 Algorytm for_each() zwraca obiekt funkcyjny stosowany

do elementów kolekcji.

 Przykład 1:
void echo(short num) {

cout << num << endl;

}

…

vector<short> vect;

…

for_each(vect.begin(), vect.end(), echo);

Algorytm for_each

 Przykład 2:
struct Sum {

void operator()(int n) { sum += n; }

int sum{0};

};

…

std::vector<int> nums{3, 4, 2, 8, 15, 267};

…

auto print = [](const int& n)

{ cout << n << " "; };

for_each(nums.cbegin(), nums.cend(), print);

cout << '\n';

…

std::for_each(nums.begin(), nums.end(),

[](int &n){ n++; });

…

Sum s = std::for_each(nums.begin(), nums.end(), Sum());

Algorytmy niemodyfikujące

wyszukujące
 Fukcja find() znajduje pierwsze wystąpienie zadanej

wartości.

 Fukcja find_end() znajduje ostatnie wystąpienie

zadanego ciągu wartości.

 Fukcja search() znajduje pierwsze wystąpienie

zadanego ciągu wartości.

 Fukcja min_element() znajduje element o

najmniejszej wartości.

 Fukcja max_element() znajduje element o

największej wartości.

Algorytmy niemodyfikujące

wyszukujące

 Przykład 1:

const int N = 7;

int myints[N] = {3,7,2,5,6,4,9};

…

// using default comparison:

cout << "The smallest element is "

<< *min_element(myints, myints+N) << endl;

cout << "The largest element is "

<< *max_element(myints, myints+N) << endl;

Algorytmy niemodyfikujące

wyszukujące

 Przykład 2:
int n;

cin >> n;

…

std::vector<int> v {0, 1, 2, 3, 4};

…

auto result = find(begin(v), end(v), n);

if (result != end(v))

cout << "v contains: " << n << '\n';

else

cout << "v does not contain: " << n << '\n';

Algorytmy niemodyfikujące

sprawdzające

 Fukcja count_if() zlicza wystąpienia zadanej

wartości w określonym zakresie.

 Fukcja equal() sprawdza czy wartości z podanych

zakresów są sobie równe.

 Fukcja missmatch() znajduje pierwsze wystąpienie

różnicy w podanych ciągach wartości (wynikiem jest

para iteratorów).

 Fukcja is_permutation() sprawdza czy jeden zakres

jest permutacją innego zakresu.

 Fukcja is_sorted() sprawdza czy jeden zakres jest

posortowany.

Algorytm is_prmutation

static constexpr auto v1 = {1,2,3,4,5};

static constexpr auto v2 = {3,5,4,1,2};

static constexpr auto v3 = {3,5,4,1,1};

cout << v2 << " is a permutation of " << v1 << ": " << boolalpha

<< is_permutation(v1.begin(), v1.end(), v2.begin()) << endl

<< v3 << " is a permutation of " << v1 << ": " << boolalpha

<< is_permutation(v1.begin(), v1.end(), v3.begin()) << endl;

Algorytmy modyfikujące

 Algorytmy modyfikujące zmieniają wartość elementów. Mogą

one bezpośrednio modyfikować elementy z danego zakresu

lub modyfikować je podczas kopiowania do innego zakresu.

 Algorytm for_each() dopuszcza operację modyfikującą

swój argument – zatem argument ten musi być przekazywany

przez referencję.

 Przykład:
void square (int &elem) { elem *= elem; }

…

for_each(coll.begin(), coll.end(), square);

Algorytmy modyfikujące

 Algorytm transform() wykorzystuje operację zwracającą

modyfikowany argument (wynik operacji można przypisać do

pierwotnego elementu).

 Przykład:
int square (int elem) { return elem * elem; }

…

transform(coll.begin(), coll.end(),

coll.begin(), square);

 Funkcja copy() kopiuje zakres począwszy od pierwszego

elementu; funkcja copy_backward() kopiuje zakres począwszy

od ostatniego elementu.

 Funkcja move() przenosi zakres począwszy od pierwszego

elementu; funkcja move_backward() przenosi zakres począwszy

od ostatniego elementu.

Algorytmy modyfikujące

 Funkcja fill() zastępuje każdy element z zadanego

zakresu podaną wartością.

 Funkcja replace() zastępuje elementy o określonej

wartości z zadanego zakresu inną wartością.

 Funkcja generate() zastępuje każdy element z zadanego

zakresu wartością wygenerowaną przez podaną funkcję

bezargumentową.

 Funkcja merge() scala dwa zakresy.

 Funkcja swap_ranges() zamienia miejscami elementy z

dwóch zakresów.

Algorytmy usuwające

 Algorytmy usuwające są specjalną postacią algorytmów
modyfikujących. Mogą one usuwać elementy albo z
pojedynczego zakresu, albo przy jednoczesnym
kopiowaniu do innego zakresu. Tak jak w przypadku
algorytmów modyfikujących, jako kontenera
docelowego nie możemy użyć kontenera asocjacyjnego
ani nieuporządkowanego.

 Funkcja remove() usuwa elementy o podanej wartości.

 Funkcja remove_if() usuwa elementy spełniające
zadany predykat.

 Funkcja unique() usuwa elementy powtarzające się
(sąsiednie).

Algorytmy mutujące

 Algorytmy mutujące to algorytmy, które zmieniają
kolejność elementów (a nie ich wartości) poprzez
operacje przypisania i zamiany ich wartości.

 Funkcja reverse() odwraca kolejność elementów.

 Funkcja rotate() przesuwa cyklicznie elementy.

 Funkcja random_shuffle() losowo zmienia kolejność
elementów.

 Funkcja partition() dzieli zakres na elementy
spełniające predykat (na początku kolekcji) i te
niespełniające (na końcu kolekcji – funkcja zwraca
iterator do początku drugiego przedziału.

Algorytmy sortujące

 Algorytmy sortujące są specjalnym rodzajem algorytmu

mutującego, ponieważ także zmieniają kolejność

elementów. Sortowanie jest jednak bardziej

skomplikowane niż proste operacje mutujące i zabiera

zwykle więcej czasu.

 Funkcja sort() sortuje elementy.

 Funkcja stable_sort() sortuje elementy w sposób

stabilny.

Algorytmy pracujące na

posortowanych danych

 Algorytmy przeznaczone dla zakresów posortowanych

wymagają, aby zakresy, na których one operują, były

posortowane zgodnie z ich kryterium sortowania.

 Funkcja binary_search() sprawdza, czy dany zakres

zawiera określony element.

Literatura

 [1] B.Stroustrup: C++. Kompendium wiedzy. Wydanie 4.

Helion 2013. Rozdział 32: Algorytmy STL.

 [2] N.M.Josuttis: C++. Biblioteka standardowa. Wydanie 2.

Helion 2014. Rozdział 11: Algorytmy STL.

