
Kurs języka C++
1. Łagodne wprowadzenie do języka C++

Spis treści

 Pierwsze programy w C++

 Struktura programu w C++

 Zmienne ustalone const i ulotne volatile

 Referencje

 Napisy typu string

 Tablice typu vector

 Pętla for dla przeglądania tablic

 Wskaźnik pusty nullptr

 Standardowe wejście i wyjście

Pierwsze programy

 Najprostszy program w języku C++:

main() { }

 Program powitalny w języku C++:

#include <iostream>

using namespace std;

int main (int argc, char *argv[]) {

cout << "witaj na kursie C++" << endl;

return 0;

}

Program, który coś oblicza

 Oto program, który zamieni milimetry na cale:

#include <iostream>

using namespace std;

int main () {

cerr << "[mm]: ";

double mm;

cin >> mm;

double inch = mm/25.3995;

cout << inch << endl;

cerr << mm << "[mm] = " << inch << "[in]" << endl;

return 0;

}

Struktura programu w C++

 Podział na pliki:
 nagłówkowe (rozszerzenie .hpp) z deklaracjami,

 źródłowe (rozszerzenie .cpp) z definicjami.

 W plikach nagłówkowych stosujemy włączanie
warunkowe:
#ifndef moje_hpp
#define moje_hpp
/* właściwa zawartość pliku moje_hpp */
#endif

 Aby otrzymać uruchamialny plik wynikowy w
jednym z plików źródłowych musi się znaleźć
definicja funkcji main().

Standardowe pliki nagłówkowe

 Pliki nagłówkowe odnoszące się do biblioteki
standardowej nie mają żadnego rozszerzenia, na przykład:
#include <iostream>

#include <iomanip>

#include <string>

 Nazwy odnoszące się do starych plików nagłówkowych z
języka C są poprzedzone literą ”c”, na przykład:
#include <cmath>

#include <cstdlib>

 Wszystkie definicje z biblioteki standardowej są
umieszczone w przestrzeni nazw std, dlatego wygodnie
jest na początku (małego) programu włączyć tą przestrzeń
poleceniem:
using namespace std;

Dedukcja typów danych

 W definicji zmiennej z jawnym inicjowaniem można użyć
słowa kluczowego auto zamiast typu – można w ten sposób
utworzyć zmienną o typie takim, jak typ inicjującej wartości:
auto zmienna = wyrażenie;

 Przykład:
auto x = a * 2 – 1e-6;

 Słowo kluczowe decltype może być zastosowane w celu
określenia typu w czasie kompilacji na podstawie typu
wyrażenia:
decltype(wyrażenie) zmienna;

 Przykład:
decltype(b / 2 + 1e-6) y = 5;

Stałe, czyli zmienne ustalone

 Stałe są oznaczone deklaratorem const w deklaracji:
const TYP stała = wyrażenie;

 Stałą należy zainicjalizować podczas deklaracji.

 Inicjalizacja stałego argumentu w funkcji następuje
podczas wywołania funkcji.

 Do stałej nie wolno w programie nic przypisać – jej
wartość określamy tylko podczas inicjalizacji.

 Przykład:
const double phi = 1.618’033’989;

Stałe w porównaniu
z makrodefinicjami

 Dlaczego stałe są bezpieczniejsze od makrodefinicji?

 znany jest typ stałej

 można określić zasięg nazwy stałej

 nazwa stałej jest znana kompilatorowi

 stała to komórka pamięci posiadająca swój adres

 łatwiejsza praca z debugerem

 Używajmy stałych zamiast makrodefinicji !

Wyrażenia stałe

 Stałe wyrażenia są oznaczone deklaratorem constexpr

w deklaracji:
constexpr TYP stała = wyrażenie;

 Stałe wyrażenia constexpr są obliczane przez
kompilator na etapie kompilacji a nie wykonania programu.

 Funkcje też mogą być constexpr.

 Przykład:
const double pi = 3.141’592’653’589’793;

Typy danych

 Każdy nazwany obiekt, który deklarujemy w programie musi
być jakiegoś typu.

 Deklaracja – informuje kompilator, że dana nazwa
reprezentuje obiekt jakiegoś typu, ale nie rezerwuje dla niego
miejsca w pamięci.

 Definicja zaś – dodatkowo rezerwuje miejsce. Definicja jest
miejscem w programie, gdzie tworzony jest obiekt.

 Systematyka typów w C++:

 typy wbudowane (podstawowe),

 typy zdefiniowane przez użytkownika,

 typy pochodne.

Typy o precyzyjnie zdefiniowanej
szerokości

 Typy całkowite ze znakiem:
int8_t, int16_t, int32_t, int64_t.

 Typy całkowite bez znaku:
uint8_t, uint16_t, uint32_t, uint64_t.

 Największy typ całkowity dostępny na danym komputerze:
intmax_t, uintmax_t

 Typy te zostały umieszczone w pliku nagłówkowym
<cstdint>w przestrzeni nazw std.

 Kodowanie znaków Unicode na konkretnie 16 lub 32 bitach:
char16_t, char32_t

Binarna postać liczby całkowitej

 Literał binarny: 0b…

 Pisanie binarne:

#include <iostream>

#include <bitset>

int main() {

int a = -58, b = a>>0b11, c = -315;

std::cout << "a = " << std::bitset<8>(a) << std::endl;

std::cout << "b = " << std::bitset<8>(b) << std::endl;

std::cout << "c = " << std::bitset<16>(c) << std::endl;

}

Referencje

 Operatory, które umożliwiają tworzenie typów pochodnych:

 () funkcja

 [] tablica

 * wskaźnik

 & referencja

 && r-wyrażenie (wartość tymczasowa)

 Referencja odnosi się do istniejącego w pamięci obiektu.

 Referencję trzeba zainicjalizować.

 Referencja nie może zmienić obiektu, z którym została
związana w czasie inicjalizacji.

 Referencję implementuje się jako stały wskaźnik.

Referencje

 Definicja referencji:
typ &ref = obiekt;

 Przykład referencji:
int x = 4;
int &r = x;

 Referencje mają zastosowanie głównie jako argumenty funkcji
i jako wartości zwracane przez funkcje.

 Przykład funkcji, która zamienia miejscami wartości
zewnętrznych zmiennych:
void zamiana (double &a, double &b) {

double c = a;
a = b;
b = c;

}

Napisy i łańcuchy znakowe

 C-string to napis umieszczony w tablicy typu const
char[] zakończony znakiem o kodzie 0 '\0'.

 Łańcuch znakowy to napis typu string
przechowywany w obiekcie.

 Stringi są zadeklarowane w pliku nagłówkowym
<string>.

 Stringi można ze sobą konkatenować za pomocą
operatorów + i +=.

 W przypadku stringów nie trzeba się martwić o miejsce
na napis – zostanie ono automatycznie zaalokowane.

Wektor

 Obiekt klasy vector<T> zastępuje tablicę obiektów typu T.

 Szablon klasy vector<> jest zdefiniowany w pliku
nagłówkowym <vector>.

 Wektor jest zaimplementowany jako tablica dynamiczna.

 Deklaracja:
vector<T> u;

vector<T> v = {t0, t1, …};

const vector<T> w = {t0, t1, …};

 Do komórek wektora odwołujemy się za pomocą operatora
indeksowania, albo funkcji składowej at():
v[i]

v.at(i)

Pętla for oparta na zakresie

 Zakresy reprezentują kontrolowaną listę pomiędzy dwoma jej punktami.
Kontenery uporządkowane są nad zbiorem koncepcji zakresu i dwa
iteratory w kontenerze uporządkowanym także definiują zakres.

 Nowa pętla for została stworzona do łatwej iteracji po zakresie; jej
ogólna postać jest następująca:
for (TYP &x: kolekcja<TYP>) instrukcja;

 Przykład:
int moja_tablica[5] = {1, 2, 3, 4, 5};
for(int &x: moja_tablica) { x *= 2; }

 Pierwsza sekcja nowego for (przed dwukropkiem) definiuje zmienną,
która będzie użyta do iterowania po zakresie. Zmienna ta, tak jak
zmienne w zwykłej pętli for, ma zasięg ograniczony do zasięgu pętli.

 Druga sekcja (po dwukropku), reprezentuje iterowany zakres. W tym
przypadku, zwykła tablica jest konwertowana do zakresu. Mógłby to być
na przykład std::vector albo inny obiekt spełniający koncepcję
zakresu.

Pary

 Klasa pair umożliwia potraktowanie dwóch wartości jako
pojedynczego elementu.

 Struktura pair zdefiniowana jest w pliku nagłówkowym
<utility>.

 Struktura pair zawiera zagnieżdżone definicje typów
first_type i second_type, reprezentujące typy
składowych odpowiednio dla pól first i second.

 Szablon funkcji make_pair() umożliwia tworzenie pary
wartości bez jawnego określania typów.

 Przykłady:
std::pair<int, float> p(51, 3e-4);

auto q = std::make_pair(53, "witaj");

Typ void

 Typ void informuje nas o braku typu.

 Typ void jest typem fundamentalnym, jednak nie wolno
zadeklarować zmiennej typu void.

 Słowo void może wystąpić jako typ prosty w deklaracji typu
złożonego:

 void *ptr;

oznacza wskaźnik do pamięci na obiekt nieznanego typu;

 void fun ();

oznacza, że funkcja nie będzie zwracała żadnego wyniku.

Wskaźnik pusty nullptr

 W starszym C++, stała 0 spełnia dwie funkcje: stałej całkowitej i
pustego wskaźnika; programiści obchodzili tę niejednoznaczność za
pomocą identyfikatora NULL zamiast 0.

 W języku C identyfikator NULL jest makrem preprocesora
zdefiniowanym jako ((void*)0); w starym C++ niejawna
konwersja z void* do wskaźnika innego typu jest niedozwolona,
więc nawet takie proste przypisanie jak char* c = NULL
mogłoby być w tym przypadku błędem kompilacji.

 Sytuacja komplikuje się w przypadku przeciążania:
void foo(char*);
void foo(int);
Gdy programista wywoła foo(NULL), to wywoła wersję
foo(int), która prawie na pewno nie była przez niego
zamierzona.

Wskaźnik pusty nullptr

 Wskaźnik pusty , który nie pokazuje na żaden obiekt w
pamięci zapisujemy jako nullptr – zastępuje makro
NULL albo 0 (jest to adres o wartości 0 – adres
pierwszej komórki w pamięci operacyjnej) i jest typu
nullptr_t.

 Wskaźnik nullptr nie może być przypisany do typów
całkowitych, ani porównywany z nimi.

 Wskaźnik nullptr może być porównywany z
dowolnymi typami wskaźnikowymi.

Stos i sterta

 Stos to pamięć zarządzana przez program.

 Zmienne lokalne tworzone w instrukcji
blokowej są automatycznie usuwane przy
wychodzeniu z bloku.

 Sterta to pamięć, którą zarządza programista.

 Programista przydziela obszar pamięci dla
zmiennej operatorem new, ale musi pamiętać
o zwolnieniu tej pamięci operatorem delete.

Standardowe wejście i wyjście

 W bibliotece standardowej są zdefiniowane cztery obiekty związane ze
standardowym wejściem i wyjściem:

 cin standardowe wejście,

 cout standardowe wyjście,

 clog standardowe wyjście dla błędów,

 cerr niebuforowane standardowe wyjście dla błędów.

 Do czytania ze strumienia wejściowego został zdefiniowany operator >>:
cin >> zmienna;

 Do pisania do strumieni wyjściowych został zdefiniowany operator <<:
cout << wyrażenie;
clog << wyrażenie;
cerr << wyrażenie;

 Operatory czytające >> ze strumienia i piszące << do strumienia można
łączyć kaskadowo w dłuższe wyrażenia (wielokrotne czytanie albo
pisanie).

Wyjątki

 W przypadku dostarczenia błędnych (niezgodnych ze
specyfikacją) argumentów do funkcji należy zgłosić wyjątek.

 Wyjątki zgłaszamy instrukcją throw:
throw wyjątek;

 Powinno używać się prostych wyjątków zdefiniowanych w
pliku nagłówkowym <stdexcept>:

 domain_error – wartość spoza dziedziny;

 invalid_argument – błędny argument;

 length_error – niedopuszczalna długość;

 out_of_range – wartość spoza zakresu;

