Kurs jezyka C++

2. Klasy i obiekty

Spis tresci

» Pojecie klasy i obiektu

» Abstrakcja i hermetyzacja

» Sktadowe w Kklasie - pola i metody

» Konstruktor i destruktor

» Wskaznik this

» Ukrywanie sktadowych

» Przecigzanie nazw funkcji i metod

» Uogolnione wyrazenia state

» Argument bedacy referencja do statej
» Pola state, pola zawsze modyfikowalne
» Konstruktor kopiujacy i przypisanie kopiuj

Programowanie obiektowe

o Programowanie obiektowe to paradygmat
programowama w ktorym programy definiuje
sie za pomocg obiektow - elementow lqczqcych
stan (czyli dane, nazywane najczesciej polami) i
zachowanie (czyll funkcje sktadowe, nazywane

tez metodami).

O Programowanie obiektowe opiera sie na
czterech paradygmatach:

O abstrakcja,

O hermetyzacja,
O dziedziczenie,
o polimorfizm.

Abstrakcja

O Abstarkcja to | paradygmat programowania
obiektowego - kazdy obiekt w systemie jest
modelem abstrakcyjnego wykonawcy, ktory
moze wykonywac prace, opisywac i zmieniac
swoj stan oraz komunikowac sie z innymi
obiektami bez ujawniania, w jaki sposob
zaimplementowano jego cechy.

Hermetyzacja

O Hermetyzacja (nazywana tez enkapsulacjg) to
Il paradygmat programowania obiektowego -
oznacza zamkniecie w obiekcie danych i
funkcji sktadowych do operowania na tych
danych. Hermetyzacja to rowniez ukrywanie
implementacji - zapewnia, ze obiekt nie moze
zmieniac stanu wewnetrznego innych obiektow
w nieoczekiwany sposob (tylko wtasne metody
obiektu sg uprawnione do zmiany jego stanu).
Kazdy typ obiektu prezentuje innym obiektom
swoj interfejs, ktory okresla dopuszczalne
metody wspotpracy.

Klasy

Klasa to typ zdefiniowany przez programiste.

Program obiektowy to zbior deklaracji i definicji klas.

Klasa jest modelem (projektem) a obiekt jest instancja
klasy (realizacja projektu).

» Klasa posiada zestaw roznych pol i metod:
» wartosci pol w obiekcie okreslaja stan obiektu.

» Obiekt posiada wtasne pola ale wspolne dla wszystkich
obiektow sa funkcje sktadowe (metody):

» metody pracuja na rzecz konkretnego obiektu za pomoca
niejawnie przekazanego wskaznika do obiektu zrodtowego.

Klasy

» Klase definiuje sie nastepujaco:
class klasa {
// definicje pdl
// deklaracje metod
Y

» Po zrobieniu definicji mozna tworzyc obiekty klasy:
klasa x, vy, z;

» Mozemy tez tworzyc¢ wskazniki, referencje i tablice obiektow
danej klasy:
klasa *wsk = &x;
klasa &ref = vy;
klasa *&r2w = wsk;
klasa tab[10];

Klasy

» Przyktad definicji klasy (w pliku nagtowkowym
.hpp) z wykorzystaniem hermetyzacji:
class punkt {
private:
double x, vy;
public:
punkt (double a, double b);
~punkt ()
volid przesun x (double dx);
volid przesun y (double dy);
double wsp x ();
double wsp v ();
double odleglosc (punkt &p):;

};

Klasy

» Metody w klasie tylko deklarujemy (jak funkcje w plikac
nagtowkowych).

» Definicje metod umieszczamy poza klasg (definicje te sg
kwalifikowane nazwa kasy za pomoca operatora zakresu : :

» Przyktad definicji metody poza klasa:
void punkt::przesun x (double dx) {
X += dx;
}

» Zmienne globalne czy funkcje globalne kwalifikujemy
operatorem zakresu globalnego:
s sZimlennay
()

Obiekty

» Mozna utworzyc obiekt na stosie za pomoca
zwyktej deklaracji potaczonej z inicjalizacja.

» Przyktad obiektu automatycznego:
punkt a = punkt(4,06);
punkt b(5,7);

» Mozna tez utworzyc obiekt na stercie za pomoca
operatora new. Pamietaj o usunieciu go
operatorem delete, gdy bedzie niepotrzebny.

» Przyktad obiektu w pamieci wolnej:
punkt *p = new punkt (-2,-3);
[/ ..
delete p;

Sktadowe w klasie

» Wewnatrz klasy mozna zdefiniowac pola sktadowe
(podobnie jak zmienne) oraz zadeklarowac funkc
sktadowe (podobnie jak funkcje globalne).

» Kazdy obiekt ma wtasny zestaw pol sktadowych
Wartosci pol sktadowych w obiekcie wyznaczaja
jego stan.

» Funkcje sktadowe okreslajg funkcjonalnosc klasy.
pomocg funkcji sktadowych mozna sterowac sta
obiektow i ich zachowaniem.

Odwotania do sktadowych w
klasie

» Do sktadowych w obiekcie odwotujemy
sie za pomocg operatora dostepu do
sktadowych (kropka . dla obiektow i
referencji albo strzatka -> dla
wskaznikow).

» Metoda jest wywotywana na rzecz
konkretnego jednego obiektu.

» Przyktady odwotania do sktadowych w
obiekcie:
punkt a(l7,23), b((20,19);
punkt *p &a, &r = b;
double d a.odleglosc (b);
r.przesun y(3);
p->przesun x(6);

Pola sktadowe

» Pola w klasie mogg by¢ danymi typu podstawowego (bool, cha
int, double, itd), ale moga tez byc obiektami innych klas.

» Przytady:
struct lwymierna {
int licznik, mianownik;
b
struct osoba {
int rok ur;
double waga, wzrost;
string 1imie, nazwilisko;
b
» Budowanie nowej klasy w oparciu o obiekty innych klas nazy
sie kompozycja.

Funkcje sktadowe

» Funkcje sktadowe w klasie tylko deklarujemy (jak funkcj
globalne w plikach nagtowkowych).

» Definicje metod umieszczamy poza klasg (definicje te sg
kwalifikowane nazwa kasy za pomoca operatora zakresu : :

» Przyktad definicji metod poza klasa (w pliku zrodtowym . cp
volid punkt::przesun x (double dx) { x += dx; }
void punkt::przesun y (double dy) { y += dy; }
double punkt::wsp x () { return x; }
double punkt::wsp y () { return y; }
double punkt::odleglosc (Punkt &p) {

double dx=x-p.x, dy=y-p.y;
return sqgrt (dx*dx+dy*dy) ;
}

» W ciele metody mozemy sie odnosi¢ do wszystkich sktado
w tej samej klasie bez operatora zakresu : :.

Konstruktor

» Konstruktor to specjalna metoda uruchamiana tylko podc
inicjalizacji obiektu - jego celem jest nadanie poczatkow
stanu obiektowi.

Konstruktor ma taka sama nazwe jak klasa.
Konstruktor nie zwraca zadnego wyniku.
Konstruktor mozna przeciazyc.

Przyktad konstruktora:
punkt: :punkt (double a, double b) {
X =a, y = b;

v vyvyy

}

Konstruktor domyslny

» Jesli programista nie zdefiniuje Zadnego konstruktora w
klasie, wowczas kompilator wygeneruje konstruktor
domyslny (konstruktor bezargumentowy), ktory nic nie
robi.

» Przyktad konstruktora bezargumentowego zdefiniowanego

jawnie:
punkt: ::punkt () {
x =y = 0;

}

» Deklaracja obiektu z konstruktorem domyslnym:
// punkt p(); - to jest zle!
punkt p = punkt(); // to samo co; Punkt p;
// punkt p; - to jest tez dobrze!

Konstruktor domyslny

» Jesli programista zdefiniowat jakies
konstruktory w klasie i chciatby miec
konstruktor domysiny, to moze wymusic na
kompilatorze wygenerowanie konstruktora
domyslnego za pomoca frazy =default
umieszczonej na koncu deklaracji.

» Przyktad konstruktora domyslnego, ktory
zostanie wygenerowany przez kompilator:
punkt () = default;

Konstruktory delegatowe

» Konstruktor delegatowy wywotuje inny
konstruktor do zainicjalizowania obiektu.

» Wywotanie konstruktora wtasciwego w
konstruktorze delegatowym nastepuje na
liscie inicjalizacyjnej (jest to jedyne
wywotanie na liscie inicjalizacyjnej):
K::K(.) : K(.) { .. }

» Tresc konstruktora delegatowego pracuje na
zainicjalizowanym juz obiekcie.

Konstruktory delegatowe

» Wywotanie innych rownorzednych konstrukt
zwanych delegacjami, umozliwia wykorzysta
cech innego konstruktora za pomoca niewielk
dodatku kodu.

» Przyktad:
class SomeType {
int number;

public:
SomeType (1nt num) : number (num)
SomeType () : SomeType (45) ({}

/]
} s

Konstruktory delegatowe

» W C++ obiekt jest skonstruowany, jesli
dowolny konstruktor zakonczy swoje
dziatanie.

» Jesli wielokrotne wykonywanie
konstruktorow jest dozwolone, to znaczy,
ze kazdy konstruktor delegatowy bedzie
wykonywany na juz skonstruowanym
obiekcie.

» Konstruktory klas pochodnych beda
wywotane wtedy, gdy wszystkie
konstruktory delegatowe ich klas
bazowych beda zakonczone.

Destruktor

v

Destruktor to specjalna metoda uruchamiana tuz
przed likwidacjg obiektu - jego celem jest
posprzatanie po obiekcie (zwolnienie jego
zasobow - pamiec na stercie, pliki, itp.).

Nazwa destruktora to nazwa klasy poprzedzona
tylda.

Destruktor nie zwraca zadnego wyniku.
Destruktor nie przyjmuje zadnych argumentow.

Przyktad destruktora:
punkt: :~punkt () {

x =vyv = 0;
}

Destruktor

» Destruktor mozna wywotac jawnie w czasie zyc
obiektu tak jak zwykta funkcje sktadowa:
punkt p(l,2);
punkt *pp = &p;

/ /..
p.~punkt () ;
pp—>~punkt () ;

» Destruktora nie powinno sie wywotywac w
sposob jawny w programie!

» Destruktor jednak mozna wywotac w jawny
sposob w przypisaniu kopiujacym.

Wskaznik this

» Wskaznik this jest ukrytym parametrem kazdej
instancyjnej funkcji sktadowej.

» Wskaznik this pokazuje na biezacy obiekt.

» Wskaznika tego uzywany tylko w instancyjnych
funkcjach sktadowych i w konstruktorach.

» Typ wskaznika this jest taki jak klasy, w ktorej
jest uzywany.
» this stosujemy najczesciej w przypadku:

» zastoniecia nazwy sktadowej przez nazwe lokalng (na
przyktad przez nazwe argumentu);

» jawnego wywotania destruktora (this->~Klasa

Ukrywanie sktadowych

» Cata definicje klasy mozna podzieli¢ na bloki o
roznych zakresach widocznosci.

» Poczatek blo

private:

» Sktadowe
w klasie i

» Sktadowe

a
DU

KU rozpoczyna sie od frazy publi
bo protected:.

noza klasa.

Dry
tylko w klasie (rowniez w zewnetrznej deflmC]l
funkcji sktadowej danej klasy).

» Sktadowe chronione (blok protected:) sa
widoczne tylko w klasie i w klasach pochod
od danej klasy.

bliczne (blok public:) s widocz

watne (blok private:) sg widocz

Ukrywanie sktadowych

>

>

>

Domyslnie wszystkie sktadowe w klasie sg
prywatne a w strukturze publiczne.

Ukrywamy informacje wrazliwe, by ktos sp
Klasy przypadkiem nie zniszczyt stanu
obiektu.

Dobrym obyczajem w programowaniu jest
ukrywanie pol sktadowych, do ktorych dostep
jest tylko poprzez specjalne funkcje sktado
(zwane metodami dostepowymi albo

akcesorami - gettery do czytania i sette
pisania).

Przecigzanie nazw funkcji

» Przecigzanie albo przetadowanie nazwy funkcji
polega na zdefiniowaniu kilku funkcji o takiej samej
nazwie.

» Funkcje przecigzone muszg sie roznic listg argumento
- kompilator rozpoznaje po argumentach, o ktora
wersje danej funkcji chodzi.

» Mozemy rzecia%ac'.réwniez funkcje sktadowe i
konstruktory w klasie.

» Przyktad przecigzenia konstruktora:
class punkt {
double x, v;
public:
punkt ()
{ x =y =0; }
punkt (double x, double vy)
{ this->x = x; this->y =vy; }

State

» Modyfikator const oznacza statosc (brak zmian) zmienn
albo argumentow funkcji.

» State trzeba zainicjalizowac.

» Przyktad definicji statej:
const double pi =
3.1415926535897932386426433832795;

» W programie niewolno modyfikowac wartosci zmiennych
ustalonych (poprzez przypisanie nowych wartosci).

» Zmienne o ustalonej wartosci to przewaznie state globalne.

» Pola state bardzo czesto sa deklarowane w klasie jako p
publiczne.

Uogolnione wyrazenia state

» Za pomocg stowa kluczowego constexpr mozna
zagwarantowac, ze funkcja lub konstruktor obiektu sa statymi
podczas kompllaCJl

» Zastosowanie constexpr do funkcji narzuca bardzo sciste
ograniczenia na to, co funkcja moze robic:

>
>

>

funkcja musi posiadac typ zwracany rozny od void;

zaleca sie aby cata zawartosc funkcji sktadata sie tylko z instruk
return,

wyrazenie musi byc statym wyrazeniem po zastgpieniu argumentu
- to state wyrazenie moze albo wywotac inne funkcje tylko wtedy,
gdy te funkcje tez sg zadeklarowane ze stowem kluczowym
constexpr albo uzywac innych statych wyrazen;

wszystkie formy rekursji w statych wyrazeniach sg zabronione;

funkcja zadeklarowana ze stowem kluczowym constexp
moze by¢ wywotywana, dopoki nie bedzie zdefiniowana
jednostce translacyjnej.

Uogolnione wyrazenia state

» Statowyrazeniowy konstruktor stuzy do konstrukcji
wartosci statowyrazeniowych z typow zdefiniowanych

przez uzytkownika, konstruktory takie musza byc
zadeklarowane jako constexpr.

» Statowyrazeniowy konstruktor musi byc zdefiniowany
przed uzyciem w jednostce translacyjnej (podobnie jak
metoda statowyrazeniowa) i musi miec puste ciato
funkcji i musi inicjalizowac swoje sktadowe za pomoca
statych wyrazen na liscie inicjalizacyjnej.

» Destruktory takich typow powinny byc trywialne.

Argumenty state

» Modyfikator const moze wystepowac przy
argumentach w funkcji.

» Jesli argument jest staty to argumentu takiego nie
wolno w funkcji zmodyfikowac.

» Przyktad funkcji z argumentami statymi:
int abs (const 1nt a) {
} return a<0 ? -a : aj;

» Czesto argumentami statymi sg referencje.

» Przyktad funkcji z argumentami statymi:
int min (const 1nt &a, const int &b)
return a<b ? a : b;
}

» Argument staty jest inicjalizowany przy wyw
funkcji.

{

Referencja do statej
jako argument w funkcji

» Referencja do statej moze sie odnosic do obiek
zewnetrznego (moze byc zadeklarowany jako st
ale rowniez do obiektu tymczasowego.

» Przyktad referencji do statej:
const int &rc = (2*3-5)/7+11;

» Przyktad argumentu funkcji, ktory jest referencj
do statej:
int fun (const 1int &r);

// wywoltanie moze mie¢ postac
// fun (134+17) ;

// gdzie argumentem moze by¢ wyraz

Staty wskaznik
i wskaznik do statej

» Wskaznik do statej pokazuje na obiekt, ktorego nie m
modyfikowac. Przyktad:
int a=7, b=5;
const int *p = &a;
// *p = 12; to jest biad
p = &b; // ok

» Staty wskaznik zawsze pokazuje na ten sam obiekt. Przykt
int a=13, b=11;
int *const p = &a;
*p = 12; // ok
// p = &b; to jest bitad

» Mozna rowniez zdefiniowac staty wskaznik do statej. Pr
int c=23;
const int *const p = &c;

Pola state w klasie

» W klasie mozna zdefiniowac pola state z deklaratorem const.
Przyktad:
class zakres {
const int MIN, MAX;
public:
zakres (int mi, int ma);
// ..
I

» Inicjalizacji pola statego (i nie tylko statego) mozna dokonac
tylko poprzez liste inicjalizacyjna w konstruktorze (po
dwukropku za nagtowkiem). Przyktad:
zakres::zakres(int mi, int ma) : MIN(mi),
MAX (ma) {

if (MIN<O| |MIN>=MAX)
throw string("zte zakresy");
}
Inicjalizacja pol na liscie ma postac konstruktorowa.

» Konstruktor kopiujacy nie zostanie wygenerowany
automatycznie tylko wtedy, gdy w klasie nie ma pol

State funkcje sktadowe

» W klasie mozna zadeklarowac state funkcje sktadowe z
deklaratorem const. Przyktad:
class zakres {

const int MIN, MAX;

public:
int min () const;
int max () const;
/] ..

Y

» Stata funkcja sktadowa gwarantuje nam, ze nie bedzie
modyfikowac zadnych pol w obiekcie (nie zmieni stanu obi

Przyktad:
int zakres::min () const { return MIN,; }
int zakres::max () const { return MAX; }

» Na obiektach statych mozemy dziatac tylko statymi f
sktadowymi.

Pola zawsze modyfikowalne

» Jedli obiekt zostanie zadeklarowany jako staty, to mozna na ni
wywotywac tylko state funkcje sktadowe, ktore nie zmieniajg
stanu obiektu.

» W klasie mozna jednak zdefiniowac zawsze modyfikowalne pola
sktadowe za pomoca deklaratora mutable. Przyktad:
class zakres
{
mutable int wsp;
public:
volid nowyWsp (int w) const;
// ..
I

» Pole zawsze modyfikowalne moze by¢ zmieniane w statym
obiekcie przez statg funkcje sktadowa. Przyktad:
vold zakres::nowyWsp (int w) const
{

if (w<O| |w<wsp/2| |w>wsp*2)
throw string("z1y wspditczynnik") ;
WSp = W;

Kopiowanie obiektow

>

>

Kompilator automatycznie wygeneruje przypisanie
kopiujace i konstruktor kopiujacy dla klasy.

Przyktad:
class K { .. };

X

(x); // konstruktor kopiujacy
= x; // tez konstruktor kopiujacy
y; // przypisanie kopiujace

XN N N
N

Kopiowanie obiektow

» W definicji klasy mozna zablokowac wygenerowanie
przypisania kopiujacego i konstruktora kopiujacego dla
klasy przez uzycie frazy delete.

» Przyktad:

class K {

// ..
public:
K(const K &k) = delete;

K& operator = (const K &k) = delete;
// ..

s

