Kurs jezyka C++

4. Przecigzanie operatorow

Spis tresci

» Funkcje zaprzyjaznione

» Przecigzanie operatorow

» Operatory sktadowe w klasie

» Zaprzyjaznione funkcje operatorowe
» Operatory predefiniowane

» Niestatyczne operatory sktadowe

» Operatory new i delete

» Operatory strumieniowe << i >>

Funkcje zaprzyjaznione

Problem z kwiatkami w domu w czasie dalekiej podrozy stuzbow

Funkcja, ktora jest przyjacielem klasy, ma dostep do wszystkich j
prywatnych i chronionych sktadowych.

To klasa deklaruje, ktore funkcje sa jej przyjaciotmi.

Deklaracja przyjazni moze sie pojawic w dowolnej sekcji i jest
poprzedzona stowem kluczowym friend.

Funkcje zaprzyjaznione

» Przyktad klasy z funkcja zaprzyjazniona:

// klasa z funkcja zaprzyjazniona
class pionek
{

int x, vy,

/] ..

friend void raport(const pionek &p);

I
// funkcja, ktdéra jest przyjacielem klasy
vold raport (const pionek &p)

{
cout << "(" << p.x << ", " <K< p.y <<

}

Funkcje zaprzyjaznione

» Nie ma znaczenia, w ktorej sekcji (prywatnej,
chronionej czy publicznej) pojawi sie deklaracja
przyjazni.

» Funkcja zaprzyjazmona z klasa nie jest jej
sktadowa, nie moze uzywac wskaznika this w

stosunku do obiektow tej klasy.

» Jedna funkcja moze sie przyjaznic z kilkoma
klasami.

» Istotg przyjazni jest dostep do niepublicznych
sktadowych w klasie - sensowne jest deklarow
przyjazni, gdy dana funkcja pracuje z obie
klasy.

Funkcje zaprzyjaznione

» Mozna takze umiesci¢ w klasie nie tylko
deklaracje funkcji zaprzyjaznionej, ale
rowniez jej definicje; tak zdefiniowana
funkcja:

» jest nadal tylko przyjacielem klasy;
» jest inline;

» moze korzystac z typow zdefiniowanych w
klasie.

» Funkcja zaprzyjazniong moze byc funkcja
sktadowa z innej klasy.

Klasy zaprzyjaznione

» Mozemy w klasie zadeklarowac przyjazn z
inng klasa, co oznacza, ze kazda metoda tej
innej klasy jest zaprzyJazmona Z klasg
pierwotna.

» Przyktad:

class A

{

friend class B;

/] ..
b

» Przyjazn jest jednostronna.
» Przyjazn nie jest przechodnia.
» Przyjazni sie nie dziedziczy.

Klasy zaprzyjaznione

» Dwie klasy moga sie przyjaznic z
wzajemnoscia:

class A;
class B;

class B {
friend class A;

/]
}

class A {
friend class B;

/]
}

Po co przecigzac operatory?

» Porownaj dwa wyrazenia:
y = a*x+b;
y = dodaj (pomnoz (a,x),b);

» A teraz wyobraz sobie funkcyjny zapis takiego wyrazenia:
y = (a*c-b*d)/ (a*atb*b);

» Operatory tylko upraszczaja notacje wyrazen.

Przyktad
przecigzenia operatora

>

Przyktad klasy pamietajacej liczbe zespolong, dla ktorej
przecigzymy operator dodawania:
class comp

{

public:
const double re, im;

public:
comp (double r=0, double 1i=0) : re(r), im(1
comp (const comp &c) : re(c.re), im(c.im)

I

Przyktad operatora dodawania dla obiektow z liczbami zespolon

comp operator + (comp a, comp b)

{

return comp(a.ret+b.re, a.im+b.im);

}

Przyktad uzycia operatora dodawania liczb zespolonych;
comp a(2), b(3,5), ¢c = a + b;

Ogolne zasady przecigzania
operatorow

» Mozna tylko przeciazac operatory, nie wolno
definiowac nowych.

» Przy przecigzaniu operatora nie mozna zmienic
jego priorytetu, arnosci ani tagcznosci.

» Co najmniej jeden z argumentow przecigzaneg
operatora musi sie odnosic do klasy (nie wolno
zmieniac znaczenia operatorow w stosunku do
typow podstawowych).

» Nie wolno uzywac argumentow domyslnych w
operatorach.

Przecigzanie operatorow

» Nazwa funkcji operatorowej to operator @, gdz
@ to symbol (nazwa) operatora.

» Mozna deklarowac funkcje definiujace znaczeni

nastepujacych operatorow:
+ - * /5N &] <LK >>

t= —= F= /= &= "= §= |= <<= >>=
= ~ | < > <K= >= == 1=,

§& || ++ —— => =>* [()

new new/|[] delete delete]]

» Mozna definiowac zarowno operatory
dwuargumentowe jak i jednoargumentowe
(prefiksowe i postfiksowe).

Przecigzanie operatorow

» Nie mozna definiowac nastepujacych operatorow:
?: (operator warunkowy)
s rez,olucla Zasiegu)
. (wybor sktadowej) o
. * (wybor sktadowej za pomoca wskaznika do
sktadowej)

» Nie mozna tez przecigzyc operatora, ktory podaj
rozmiar obiektu sizeof oraz operatora
rozmieszczenia danych w pamieci alignof.

» Nie wolno przecigzac operatorow rzutowania:
static cast, dynamic cast, const cast]
reinterpret cast.

» Nie wolno definiowac operatorow # i ##, ktore s
poleceniami dla prekompilatora.

Zaprzyjaznione
funkcje operatorowe

>

>

Bardzo czesto funkcje operatorowe siggaja do ukrytych sktag
klasie - wtedy wygodnie jest zadeklarowac w klasie przyjazn
operatorem.

Przyktad:

class comp {
friend comp operator + (comp a, comp b);
double re, im;

public:
comp (double r=0, double i1=0) : re(r), im(i)
/] ..

I

comp operator + (comp a, comp b) {
return comp(a.re + b.re, a.im + b.1im);

}

comp x(3, 7), y(5);
X =X t vy

X = x + 8.5;

x = -7.5 + x;

Operatory sktadowe w klasie

» Mozna zdefiniowac operator jako funkcje sktadowa w klasie
pierwszym niejawnym argumentem bedzie obiekt tej klasy.
» Przyktad:

class comp {
double re, im;

public:
??mp (double r=0, double 1=0) : re(r), 1im(1)
com§ operator- (comp b);

} comp operator- ();

cémp comp: :operator—- (comp b) {
return comp(re - b.re, 1m - b.im);

}

comp comp: :operator—- () {

return comp (-re, -im);

}

comp x(3, 7), y(5);

X = =X - V;

X =X — 8.5;

// x = 7.5 - x; // btad

Symboliczne 1 funkcyjne
wywotanie funkcji operatorowej

» Niech dana bedzie funkcja operatorowa operator@. Wtedy mo
wywotac na dwa sposoby:
x @ y // wywotanie symboliczne
operator@(x, y) // wywotanie funkcyjne

» Niech dana bedzie sktadowa funkcja operatorowa operator @. W
mozemy ja wywotac na dwa sposoby:
x @ y // wywotanie symboliczne
x.operator@ (y) // wywotanie funkcyjne

Operatory predefiniowane

» Jest kilka operatorow, ktorych znaczenie jest tak intuicyjne, ze
automatycznie wygenerowane dla kazdej klasy:

» przypisanie =,
» jednoargumentowy operator pobrania adresu &,
» sekwencja kolejnych wyrazen , (przecinek),

» tworzenie i usuwanie obiektow new, new[], delete, delete[].

» Mozna zdefiniowac wtasne wersje wymienionych operatorow, jesli ch
zmienic ich domyslne zachowanie.

Niestatyczne operatory sktadow

» Istniejg cztery operatory, ktdére musza byc¢ niestatycznymi opera
sktadowymi:
przypisanie =,
indeksowanie [],
wywotanie funkcji (),
odwotanie do sktadowej ->.

Operator przypisania

» Jesli nie zdefiniujemy przypisania kopiujacego, to wygeneruje go
kompilator (o ile nie ma w naszej klasie pol statych).

» Postac operatora przypisania kopiujacego:
K & K::operator= (const K &k) {/*.*/}
K & K::operator= (K &k) {/*..x/}

» Domyslny operator przypisania kopiujacego kOplU]e sktadnik po sktad
Ale czasami takie kopiowanie nie jest dobre!

» Operator przypisania mozna przecigzac.

» Cechy prawidtowo napisanego operatora przypisania:
» nie zmienia stanu wzorca, z ktorego kopiuje;
» sprawdza, czy nie kopiuje sam na siebie;
» likwiduje biezace zasoby (podobnie do destruktora);
» tworzy nowy stan obiektu na podobienstwo wzorca (podobnie jak konstruktor kopIUchy).

» Przyktad:
K & K::operator= (const K &k)
{
if (&k==this) return *this;
this->~K () ;
// kopiowanie (giebokie) stanu z obiektu k
return *this;

Operator indeksowania []

» Operator odwotania do tablicy mozna zaadoptowac do
odwotywania sie do elementdéw kolekcji wewnatrz obiektu.

» Aby odwotanie indeksowe mogto stac po obu stronach operatora
przypisania musimy zwracac referencje do elementu kolekcji.

Indeksowac mozna dowolnym typem (niekoniecznie int).

» Przyktad:
double comp::operator[] (bool b) const {
return b ? re : im;
}
double& comp:: operator[] (bool b) {

return b ? re : im;

}

Operator wywotania funkcji ()

v

vVVvVVYyYy

\

Operator wywotania funkcji () moze miec dowolng
liczbe argumentow (rowniez wiecej niz dwa).

Operator wywotania funkcji wywotujemy na obiekcie.
Operator ten moze miec argumenty domniemane.
Operator ten mozna przecigzac wiele razy w klasie.
Wywotuje sie go na rzecz jakiegos obiektu. Przyktad:

class K;

K a;

// ..

a(); // a.operator () ();
/] ..

a(l,2,3); // a.operator() (1,2,3);

Operator wskazywania
na sktadowa ->

» Operator ten wywotujemy na obiekcie (a nie na
wskazniku do danego obiektu).

» Operator ten musi zwracac albo wskaznik albo obiekt
takiej klasy, ktory ma przetadowany operator ->.

» Wywotanie:
obiekt->skladowa

Interpretacja wywotania:
(obiekt.operator->())->skladowa

Postinkrementacja
i postdekrementacja

» Operatory ++ i —— mogg byc¢ zarowno prefiksowe jak i
postfiksowe; prefiksowe operatory ++ i —— definiuje sie
jednoargumentowe (naturalna definicja) a postfiksowe j
dwuargumentowe:
class K
{
public:

// operatory prefiksowe
K & operator ++ ()
K & operator -- ()

// operatory postfiksowe
K operator ++ (i1nt);
K operator -- (int);
/..

b

Operatory new 1 new []
oraz delete idelete]]

» W klasie mozna zdefiniowac wtasne operatory new i delete;
jesli sa one zdefiniowane to kompilator uzyje wtasnie ich (a
globalnych operatorow) do przydzielania i Zwalniania pamiec

» Definicja operatorow new i delete musi wygladac

nastepujaco:

?lass K

public:
// operator new
static void* operator new (size t s);
static void* operator new[] (size t s);
// operator delete -
static void operator delete (void *p);
static void operator delete[] (voild *p);

} /] ..
» W definicji wtasnych operatorow new i delete mozna

odwotywac sie do globalnych operatorow przydzielania

zwalniania pamieci : :new i : :delete.

Operatory new 1 new []

» Operator new ma przydzielic pamiec dla
pojedynczego obiektu a operator new[] dla
tablicy obiektow.

» Operatory new i new[] muszg byc statyczne w
klasie.

» Operatory new i new[] zwracajg jako wynik
wartosc typu voidx.

» Operatory new i new[] przyjmuja jako argument
wartosc typu size t (w przypadku new ma to byc
rozmiar jednego obiektu a w przypadku new []
rozmiar wszystkich obiektow tacznie); argument
ten jest do tych operatorow przekazywany
niejawnie (za pomocg operatora sizeof).

» Gdy zabraknie pamieci nalezy zgtosic wyjatek
bad alloc z pliku nagtowkowego <new>.

\

Operatory delete i delete]

» Operator delete ma zwolnic pamiec dla
pojedynczego obiektu a operator delete[] dla
tablicy obiektow.

» Operatory delete i delete[] muszg byc statyczn
w klasie.

» Operatory delete i delete[] nie zwracaja wynik
(sq typu void).

» Operatory deleteidelete[] przyjmuja jako
argument wskaznik typu void*.

» W przypadku argumentu bedacego wskaznikiem
pustym nullptr, nie nalezy podejmowac zadny

akcji.

Globalne operatory new i new []
oraz deleteidelete]]

» Mozna zdefiniowac wtasne wersje globalnych operatorow new i
oraz deleteidelete[] ale:

» W ten sposob catkowicie niszczymy oryginalne wersje tych operatorow;

» operator : :new jest uzywany w bibliotekach standardowych do tworze
obiektow globalnych (takich jak cin czy cout) jeszcze przed uruchomie
funkcji main () ;

» najczesciej wtasne definicje tych operatordw to btad projektowy, ktory m
doprowadzic¢ do katastrofy w dziataniu programu...

\

Operatory new|[] 1 delete|[]

» Operator new [] przydziela pamiec dla tablicy
obiektow. Wszystkie obiekty w nowo utworzonej
tablicy beda zainicjalizowane konstruktorem
domyslnym (pamietaj o zdefiniowaniu konstruk
domyslnego w klasie, ktorej obiekty beda
wystepowac w tablicach).

» Operator delete[] zwalnia pamiec przydzielon
dla tablicy obiektow. Przed zwolnieniem tej
pamieci dla wszystkich obiektow dostanie
wykonany destruktor.

Operatory << i >>
do pracy ze strumieniami

» Wygodnie jest zdefiniowac operatory << i >> do pracy
strumieniami; aby mozna byto pracowac z takimi
operatorami w sposob kaskadowy powinny one byc
zdefiniowane jako funkcje zewnetrzne w stosunku do kl
i iwracac referencje do strumienia, na ktorym dziataja;
class K

{

}

// operator czytajacy dane ze strumienia
friend

istreamé& operator >>

(istream &i1s, K &k);

// operator piszacy dane do strumienia
friend

ostreamé& operator <<
(ostream &os, const K &k);

/] ..

