
Networking (1)

Podstawowe pojęcia
dotyczące sieci

 Sieć to zbiór komputerów i innych urządzeń, które
mogą się ze sobą komunikować w czasie
rzeczywistym za pomocą transmisji danych.
Urządzenia w sieci są ze sobą połączone (kablami,
światłowodami, urządzeniami bezprzewodowymi).

 Każda maszyna (komputery, rutery, drukarki,
terminale, itp) znajdująca się w sieci nazywa się
węzłem. Węzły, które są w pełni funkcjonalnymi
komputerami nazywane są hostami.

 Każdy węzeł w sieci ma swój adres.

Podstawowe pojęcia
dotyczące sieci
 Wszystkie współczesne sieci komputerowe są

sieciami komutacji pakietów.

 Każdy pakiet oprócz fragmentu danych zawiera
informację o tym kto i dokąd go wysłał.

 Zestaw reguł według których komputery i
urządzenia komunikują się ze sobą nazywa się
protokołem.

Warstwy sieci

 Przesyłanie danych przez sieć to skomplikowana
operacja:

warstwa
aplikacji

warstwa
transportowa

(TCP/UDP)

warstwa
internetowa

(IP)

warstwa
aplikacji

warstwa
transportowa

(TCP/UDP)

warstwa
internetowa

(IP)

warstwa łącza

ścieżka logiczna

ścieżka fizyczna

Warstwy sieci
 Warstwa łącza definiuje konkretny interfejs

sieciowy (karta ethernetowa czy łącze PPP) i
przesyła datagramy IP fizycznym łączem (do sieci
lokalnej i w świat) – Java nie ma dostępu do tej
warstwy.

 Warstwa internetowa odpowiada za grupowanie
danych w pakiety oraz za schemat adresowania, w
którym różne maszyny mogą się odnaleźć – Java
zna tylko protokół IP dla tej warstwy (jest on
najpowszechniej stosowany).

Warstwy sieci

 Warstwa transportowa odpowiada za to, aby pakiety były
odbierane w tej samej kolejności w jakiej zostały wysłane,
oraz aby żaden z nich nie został uszkodzony ani zagubiony –
Java umie obsłużyć dwa protokoły tej warstwy:
 TCP (ang. Transmission Control Protocol) niezawodny,

 UDP (ang. User Datagram Protocol) zawodny ale szybki.

 Warstwa aplikacji dostarcza dane użutkownikowi – znane
protokoły tej warstwy to HTTP, SMTP, POP, IMAP, FTP, NFS,
NNTP oraz wiele innych.

Adresy IP
 Protokół Internetowy IP jest niezależny od platformy,

automatycznie wyznacza trasę rutingu.
 Każdy komputer w sieci IP jest identyfikowany za pomocą

swojego unikatowego 32-bitowego (IPv4) albo 128-
bitowego (IPv6) adresu.

 DNS (ang. Domain Name System) to usługa, która tłumaczy
nazwy mnemoniczne adresów na nazwy liczbowe.

 Pakiety, które przychodzą do określonego hosta mogą
trafiać do różnych aplikacji czy serwisów dzięki portom.
Jest ich 65535 dla protokołów TCP i UDP (porty o
numerach 1-1023 są zarezerwowane dla usług
standardowych).

Adresy IP
 W pakiecie java.net jest zdefiniowana klasa
InetAddress, która reprezentuje adres IP.

 Klasa InetAddress ma dwie podklasy
Inet4Address i Inet6Address
reprezentujące odpowiednio adresy protokułu
internetowego w standardach IPv4 i IPv6.

 Klasa ta jest wykorzystywana przez inne klasy
sieciowe: URL, Socket, ServerSocket,
DatagramSocket, DatagramPacket.

Adresy IP

 Klasa InetAddress pozwala tworzyć obiekty tych klas za
pomocą metod statycznych:
getByAddress (byte[] addr)
getByName (String host)
getLocalHost ()

 Z obiektu InetAddress można wydobyć szczegółowe
informacje o adresie IP za pomocą metod:
getHostAddress ()
getHostName ()
getCanonicalHostName ()
toString ()
isAnyLocalAddress ()
isReachable (int timeout)

Przykład

BufferedReader stdin = new BufferedReader(

new InputStreamReader(System.in));

System.err.print("Nazwa hosta: ");

String host = stdin.readLine().trim();

try {

InetAddress address = InetAddress.getByName(host);

System.out.println(address);

}

catch (UnknownHostException ex) {

System.out.println(

"Nie można zlokalizować hosta " + host + "!");

}

Adres URL
 URL (ang. Uniform Resource Locator) to referencja do

zasobu w Internecie.

 URL składa się z nazwy protokołu i nazwy zasobu, na
przykład:
http://www.oracle.com:80/index.html#ref?x=4&y=8

 Nazwa zasobu może składać się z nazwy hosta, portu,
ścieżki, pliku, referencji i zapytania.

http://www.oracle.com/index.html

Klasa URL

 Klasa URL reprezentuje adres URL w sieci WWW.

 Obiekt URL można utworzyć na kilka sposobów:
new URL (String spec)

new URL (String prot, String host,

String file)

new URL (String prot, String host,

int port, String file)

new URL (URL context, String spec)

 Podczas tworzenia obiektu URL może zostać zgłoszony
wyjątek MalformedULRException.

Klasa URL

 Klasa URL udostępnia wiele metod odczytywania
parametrów adresu URL:
getProtocol ()

getHost ()

getPort ()

getPath ()

getQuery ()

getRef ()

 W klasie URL istnieje metoda, która potrafi nawiązać
połączenie z podanym zasobem w sieci i otworzyć dla
niego strumień do czytania:
InputStream openStream ()

Przykład

URL url = new URL(URLName);

BufferedReader in = new BufferedReader(

new InputStreamReader(url.openStream()));

String line;

while ((line=in.readLine()) != null) {

System.out.println(line);

}

in.close();

Klasa URLConnection

 Klasa URLConnection ma zapewnić łatwiejszą
w użyciu, wysokopoziomową abstrakcję
połączenia sieciowego.

 Klasa URLConnection wykorzystuje klasę
Socket do zapewnienia łączności sieciowej.

 Klasa URLConnection jest mocno związana z
protokołem HTTP i zakłada, że każdy przesyłany
plik jest poprzedzony nagłówkiem MIME.

Klasa URLConnection

 Otwieranie połączeń URLConnection:
// konstrukcja URL

URL url = new URL("http://…");

// pozyskanie URLConnection

URLConnection uc = url.openConnection();

// konfiguracja URLConnection …

// odczytanie pól nagłówka …

// pobranie strumienia wejściowego …

// pobranie strumienia wyjściowego …

// zamknięcie połączenia …

Klasa URLConnection –
parametry połączenia

 Serwery HTTP dostarczają sporo informacji w nagłówkach MIME.

 Klasa URLConnection posiada kilka metod do odczytywania
najważniejszych informacji z nagłówka MIME:
getContentType()
getContentLength()
getContentEncoding()
getDate()
getExpiration()
getLastModified()

 Klasa URLConnection posiada też kilka ogólnych metod do
odczytywania informacji z nagłówka MIME:
getHeaderFieldKey(int)
getHeaderField(int)
getHeaderField(String)

Klasa URLConnection –
konfiguracja połączenia

 Klasa URLConnectionmoże konfigurować połączenie za
pomocą metod:
setDoInput(boolean)

setDoOutput(boolean)

setAllowUserInteraction(boolean)

setUseCaches(boolean)

setIfModifiedSince(long)

 Klasa URLConnectionmoże pobrać treść (obiekt
Object) metodą getContent().

 Klasa HttpURLConnection jest podklasą
URLConnection zawiera pewne dodatkowe metody
przydatne do pracy z adresami URL typu http.

Klasa URLConnection – czytanie i
pisnie
 Czytanie danych:
URL url = new URL("http://…");
URLConnection uc

= url.openConnection();
InputStream is = uc.getInputStream();

 Pisanie danych:
URL url = new URL("http://…");
URLConnection uc
= url.openConnection();

uc.setDoOutput(true);
InputStream is = uc.getInputStream();
OutputStream os = uc.getOutputStream();

Klasa URLConnection – czytanie
 Z obiektu URLConnection można pobrać strumień wejściowy –

połączenie jest otwierane niejawnie przez wywołanie
getInputStream().

 Przykład:
URL url = new URL("http://.../...");

URLConnection conn = url.openConnection();

BufferedReader in = new BufferedReader(

new InputStreamReader(

conn.getInputStream()));

String inputLine;

while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();

Klasa URLConnection –
komunikacja z serwerem
 Sparametryzowana komunikacja z serwerem (serwer

generuje odpowiedź w oparciu o przesłane dane):

Klasa URLConnection –
komunikacja z serwerem
 Istnieje wiele technologii umożliwiających serwerom

Web wykonywanie programów/skryptów – do
najbardziej znanych należą servlety Javy, JavaServer
Faces czy skrypty CGI.

 Serwer WWW odbiera dane (na przykład z formularza)
uruchamia skrypt do przetworzenia tych danych a
następnie tworzy nową stronę w języku HTML, którą
odsyła z powrotem do przeglądarki.

 Dane przesyłane są w standardowym formacie do
serwera, który następnie zajmuje się przekazaniem ich
skryptowi, który przygotuje odpowiedź.

Klasa URLConnection –
komunikacja z serwerem
 Istnieją dwa sposoby wysyłania informacji do serwera:
GET oraz POST.

 Metoda GET polega na dołączeniu parametrów na
końcu łańcucha URL:
http://host/skrypt?parametry

 Każdy z parametrów w URL ma postać:
nazwa=wartość

 Parametry są oddzielone od siebie znakiem &.

 Wartości parametrów muszą być zakodowane zgodnie
ze schematem kodowania URL.

Klasa URLConnection –
komunikacja z serwerem
 Metoda POST nie dołącza parametrów do adresu

URL.

 Wykorzystuje ona strumień wyjściowy
URLConnection, do którego zapisuje pary nazwa-
wartość.

 Pary te muszą być poddane kodowaniu URL i
rozdzielone znakiem &.

 Aby wysłać dane przez strumień, musimy po kolei:

 URLConnection.

Klasa URLConnection –
komunikacja z serwerem
 Aby wysłać dane przez strumień, musimy po kolei:

 tworzymy obiekt URLConnection:
URL url = new URL("http://.../...");

URLConnection conn = url.openConnection();

 Następnie wywołujemy metodę setDoOutput():
conn.setDoOutput(true);

 Tworzymy strumień do wysyłania danych:
PrintWriter out =

new PrintWriter(conn.getOutputStream());

Klasa URLConnection –
komunikacja z serwerem
 Aby wysłać dane przez strumień, musimy po kolei (c.d.):

 Wysłamy dane do serwera:
out.print(name1 + "=„

+ URLEncoder.encode(value1, "UTF-8") + "&");

out.print(name2 + "=„

+ URLEncoder.encode(value2, "UTF-8"));

 Zamykamy strumień:
out.close();

 Na końcu wywołujemy metodę getInputStream() i odczytujemy
odpowiedź serwera korzystając ze strumienia wejściowego.

Literatura
 E.R.Harold: Java. Programowanie sieciowe.

Wydawnictwo RM, Warszawa 2001.

 C.S.Horstmann, G.Cornell: Java – techniki
zaawansowane. Wydanie 9. Rozdział 3:
Programowanie aplikacji sieciowych.
Wydawnictwo HELION, Gliwice 2013.

 Custom Networking (Java Tutorial):
https://docs.oracle.com/javase/
tutorial/networking/

http://download.oracle.com/�javase/tutorial/networking/

