
KURS JĘZYKA C++
1. ŁAGODNE WPROWADZENIE DO JĘZYKA C++

SPIS TREŚCI

 Pierwsze programy w C++

 Struktura programu w C++

 Zmienne ustalone const i constexpr

 Jednolita inicjalizacja

 Ograniczanie zasięgu zmiennej

 Referencje

 Napisy typu string

 Tablice typu vector

 Pętla for dla przeglądania tablic

 Wskaźnik pusty nullptr

 Standardowe wejście i wyjście

PIERWSZE PROGRAMY

 Najprostszy program w języku C++:

main() { }

 Program powitalny w języku C++:

#include <iostream>

using namespace std;

int main (int argc, char *argv[]) {

cout << "witaj na kursie C++" << endl;

return 0;

}

PROGRAM, KTÓRY COŚ OBLICZA

 Oto program, który zamieni milimetry na cale:

#include <iostream>

using namespace std;

int main () {

cerr << "[mm]: ";

double mm;

cin >> mm;

double inch = mm/25.3995;

cout << inch << endl;

cerr << mm << "[mm] = " << inch << "[in]" << endl;

return 0;

}

STRUKTURA PROGRAMU W C++

 Podział na pliki:

 nagłówkowe (rozszerzenie .hpp) z deklaracjami,

 źródłowe (rozszerzenie .cpp) z definicjami.

W plikach nagłówkowych stosujemy włączanie warunkowe:
#ifndef moje_hpp
#define moje_hpp
/* właściwa zawartość pliku moje_hpp */
#endif

Aby otrzymać uruchamialny plik wynikowy w jednym z
plików źródłowych musi się znaleźć definicja funkcji
main().

STANDARDOWE PLIKI NAGŁÓWKOWE

 Pliki nagłówkowe odnoszące się do biblioteki standardowej
nie mają żadnego rozszerzenia, na przykład:
#include <iostream>
#include <iomanip>
#include <string>

Nazwy odnoszące się do starych plików nagłówkowych z
języka C są poprzedzone literą ”c”, na przykład:
#include <cmath>
#include <cstdlib>

Wszystkie definicje z biblioteki standardowej są
umieszczone w przestrzeni nazw std, dlatego wygodnie jest
na początku (małego) programu włączyć tą przestrzeń
poleceniem:
using namespace std;

DEDUKCJA TYPÓW DANYCH

 W definicji zmiennej z jawnym inicjowaniem można użyć słowa
kluczowego auto zamiast typu – można w ten sposób utworzyć

zmienną o typie takim, jak typ inicjującej wartości:
auto zmienna = wyrażenie;

 Przykład:
auto x = a * 2 – 1e-6;

 Słowo kluczowe decltype może być zastosowane w celu określenia

typu w czasie kompilacji na podstawie typu wyrażenia:
decltype(wyrażenie) zmienna;

 Przykład:
decltype(b / 2 + 1e-6) y = 5;

STAŁE, CZYLI ZMIENNE USTALONE

 Stałe są oznaczone deklaratorem const w deklaracji:
const TYP stała = wyrażenie;

 Stałą należy zainicjalizować podczas deklaracji.

 Inicjalizacja stałego argumentu w funkcji następuje podczas
wywołania funkcji.

Do stałej nie wolno w programie nic przypisać – jej wartość
określamy tylko podczas inicjalizacji.

 Przykład:
const double phi = 1.618’033’989;

STAŁE W PORÓWNANIU

Z MAKRODEFINICJAMI

Dlaczego stałe są bezpieczniejsze od makrodefinicji?

 znany jest typ stałej

 można określić zasięg nazwy stałej

 nazwa stałej jest znana kompilatorowi

 stała to komórka pamięci posiadająca swój adres

 łatwiejsza praca z debugerem

Używajmy stałych zamiast makrodefinicji !

WYRAŻENIA STAŁE

 Stałe wyrażenia są oznaczone deklaratorem constexpr w
deklaracji:
constexpr TYP stała = wyrażenie;

 Stałe wyrażenia constexpr są obliczane przez kompilator na
etapie kompilacji a nie wykonania programu.

 Funkcje też mogą być constexpr.

 Przykład:
const double pi = 3.141’592’653’589’793;

TYPY DANYCH

 Każdy nazwany obiekt, który deklarujemy w programie musi być jakiegoś typu.

 Deklaracja – informuje kompilator, że dana nazwa reprezentuje obiekt jakiegoś

typu, ale nie rezerwuje dla niego miejsca w pamięci.

 Definicja zaś – dodatkowo rezerwuje miejsce. Definicja jest miejscem w

programie, gdzie tworzony jest obiekt.

 Systematyka typów w C++:

 typy wbudowane (podstawowe),

 typy zdefiniowane przez użytkownika,

 typy pochodne.

TYPY O PRECYZYJNIE ZDEFINIOWANEJ

SZEROKOŚCI

 Typy całkowite ze znakiem:
int8_t, int16_t, int32_t, int64_t.

 Typy całkowite bez znaku:
uint8_t, uint16_t, uint32_t, uint64_t.

 Największy typ całkowity dostępny na danym komputerze:
intmax_t, uintmax_t

 Typy te zostały umieszczone w pliku nagłówkowym <cstdint> w przestrzeni nazw
std.

 Kodowanie znaków Unicode na konkretnie 16 lub 32 bitach:
char16_t, char32_t

BINARNA POSTAĆ LICZBY CAŁKOWITEJ

 Literał binarny: 0b…

 Pisanie binarne:

#include <iostream>

#include <bitset>

int main() {

int a = -58, b = a>>0b11, c = -315;

std::cout << "a = " << std::bitset<8>(a) << std::endl;

std::cout << "b = " << std::bitset<8>(b) << std::endl;

std::cout << "c = " << std::bitset<16>(c) << std::endl;

}

JEDNOLITA INICJALIZACJA

 Celem jednolitej inicjalizacji w C++ jest jeden uniwersalny sposób inicjalizacji

danych, włącznie z kontenerami.

 Składnia inicjalizacji z wykorzystaniem nawiasów klamrowych jest teraz

dozwolona we wszystkich przypadkach.

 Przykłady:
int var1 {5};

const int con2 {10};

int arr3[] {1, 2, var1, var1 + con1};

const Point pt4 {10, 20};

std::complex<double> c5 {4.0, 2.0};

std::vector<std::string> cities6 = {

"Wroclaw",

"Cracow"

};

JEDNOLITA INICJALIZACJA

 Jednolita inicjalizacja zabrania inicjalizacji z wykorzystaniem zawężających

konwersji, za wyjątkiem niejawnej konwersji, która zawęża typ.

 Przykład:
int arr1[] = { 1, 2, 4.5 };

// OK in C++98; error in C++11

 Jednolita inicjalizacja wymusza inicjalizację wartością (ang. value initialization), co

oznacza, że nawet lokalne zmienne typów podstawowych, które posiadają

niezdefiniowaną wartość początkową, są inicjalizowane zerem (albo wartością
nullptr w przypadku wskaźników).

 Przykłady:
double d{}; // d jest równe 0.0

char *ptr{}; // ptr jest równe nullptr

int tab[4]{}; // tab jest równe [0, 0, 0, 0]

JEDNOLITA INICJALIZACJA

 Inicjalizacja agregatów za pomocą klamer przebiega dokładnie w taki sam sposób

jak w C++98 i powoduje inicjalizację składowych według kolejności ich definicji

w agregacie; liczba elementów na liście musi być równa lub mniejsza od ilości

elementów w agregacie.

 Jednolita inicjalizacja klas czy struktur nie będących agregatami powoduje

wywołanie konstruktora (z ilością i typem parametrów pasujących do

konstruktora).

OGRANICZANIE ZASIĘGU ZMIENNEJ

W INSTRUKCJI WARUNKOWEJ IF-ELSE

 Dobrym zwyczajem w programowaniu jest maksymalne ograniczanie zasięgu
zmiennej. Jednak czasami trzeba najpierw otrzymać wartość, która będzie mogła
być dalej przetwarzana tylko po spełnieniu określonego warunku.

 Przykład:
if (auto itr(char_map.find(c)); itr != char_map.end())

{

// itr jest poprawny i zostanie wykorzystany

// do pewnych operacji

}

else {

// itr jest iteratorem końcowym i nie wolno

// z niego korzystać

}

 Zmiennej lokalnej zadeklarowanej w tuż przed warunkiem w instrukcji
warunkowej można potem używać w dalszych zagnieżdżonych albo kaskadowo
połączonych instrukcjach warunkowych.

OGRANICZANIE ZASIĘGU ZMIENNEJ

W INSTRUKCJI WYBORU SWITCH-CASE

 Instrukcje if-else i switch-case wraz z inicjalizatorami to lukier syntaktyczny

(osiągnięcie takiego efektu jest możliwe po ujęciu kodu w dodatkowy nawias

klamrowy).

 Przykład:
switch (char c (getchar()); c) {

case 'a': move_left(); break;

case 's': move_back(); break;

case 'w': move_fwd(); break;

case 'd': move_right(); break;

case 'q': quit_game(); break;

//…

}

 Krótszy cykl życiowy zmniejsza liczbę zmiennych w zasięgu, co z kolei przekłada

się na większą przejrzystość kodu i jego łatwiejszą refaktoryzację.

REFERENCJE

Operatory, które umożliwiają tworzenie typów pochodnych:

 () funkcja

 [] tablica

 * wskaźnik

 & referencja

 && r-wyrażenie (wartość tymczasowa)

 Referencja odnosi się do istniejącego w pamięci obiektu.

 Referencję trzeba zainicjalizować.

 Referencja nie może zmienić obiektu, z którym została
związana w czasie inicjalizacji.

 Referencję implementuje się jako stały wskaźnik.

REFERENCJE

 Definicja referencji:
typ &ref = obiekt;

 Przykład referencji:
int x = 4;
int &r = x;

 Referencje mają zastosowanie głównie jako argumenty funkcji i
jako wartości zwracane przez funkcje.

 Przykład funkcji, która zamienia miejscami wartości zewnętrznych
zmiennych:
void zamiana (double &a, double &b) {

double c = a;
a = b;
b = c;

}

NAPISY I ŁAŃCUCHY ZNAKOWE

 C-string to napis umieszczony w tablicy typu const char[]
zakończony znakiem o kodzie 0 '\0'.

 Łańcuch znakowy to napis typu string przechowywany w
obiekcie.

 Stringi są zadeklarowane w pliku nagłówkowym <string>.

 Stringi można ze sobą konkatenować za pomocą operatorów + i
+=.

 W przypadku stringów nie trzeba się martwić o miejsce na napis
– zostanie ono automatycznie zaalokowane.

WEKTOR

 Obiekt klasy vector<T> zastępuje tablicę obiektów typu T.

 Szablon klasy vector<> jest zdefiniowany w pliku nagłówkowym

<vector>.

 Wektor jest zaimplementowany jako tablica dynamiczna.

 Deklaracja:
vector<T> u;

vector<T> v = {t0, t1, …};

const vector<T> w = {t0, t1, …};

 Do komórek wektora odwołujemy się za pomocą operatora
indeksowania, albo funkcji składowej at():

v[i]

v.at(i)

PĘTLA FOR OPARTA NA ZAKRESIE

 Zakresy reprezentują kontrolowaną listę pomiędzy dwoma jej punktami.
Kontenery uporządkowane są nad zbiorem koncepcji zakresu i dwa
iteratory w kontenerze uporządkowanym także definiują zakres.

 Nowa pętla for została stworzona do łatwej iteracji po zakresie; jej
ogólna postać jest następująca:
for (TYP &x: kolekcja<TYP>) instrukcja;

 Przykład:
int moja_tablica[5] = {1, 2, 3, 4, 5};
for(int &x: moja_tablica) { x *= 2; }

 Pierwsza sekcja nowego for (przed dwukropkiem) definiuje zmienną,
która będzie użyta do iterowania po zakresie. Zmienna ta, tak jak
zmienne w zwykłej pętli for, ma zasięg ograniczony do zasięgu pętli.

 Druga sekcja (po dwukropku), reprezentuje iterowany zakres. W tym
przypadku, zwykła tablica jest konwertowana do zakresu. Mógłby to być
na przykład std::vector albo inny obiekt spełniający koncepcję
zakresu.

PARY

 Klasa pair umożliwia potraktowanie dwóch wartości jako pojedynczego

elementu.

 Struktura pair zdefiniowana jest w pliku nagłówkowym <utility>.

 Struktura pair zawiera zagnieżdżone definicje typów first_type i

second_type, reprezentujące typy składowych odpowiednio dla pól first i

second.

 Szablon funkcji make_pair() umożliwia tworzenie pary wartości bez jawnego

określania typów.

 Przykłady:
std::pair<int, float> p(51, 3e-4);

auto q = std::make_pair(53, "witaj");

TYP VOID

 Typ void informuje nas o braku typu.

 Typ void jest typem fundamentalnym, jednak nie wolno
zadeklarować zmiennej typu void.

 Słowo void może wystąpić jako typ prosty w deklaracji typu
złożonego:

 void *ptr;

oznacza wskaźnik do pamięci na obiekt nieznanego typu;

 void fun ();

oznacza, że funkcja nie będzie zwracała żadnego wyniku.

WSKAŹNIK PUSTY NULLPTR

 W starszym C++, stała 0 spełnia dwie funkcje: stałej całkowitej i
pustego wskaźnika; programiści obchodzili tę niejednoznaczność za
pomocą identyfikatora NULL zamiast 0.

 W języku C identyfikator NULL jest makrem preprocesora
zdefiniowanym jako ((void*)0); w starym C++ niejawna
konwersja z void* do wskaźnika innego typu jest niedozwolona,
więc nawet takie proste przypisanie jak char *c = NULL
mogłoby być w tym przypadku błędem kompilacji.

 Sytuacja komplikuje się w przypadku przeciążania:
void foo(char*);
void foo(int);
Gdy programista wywoła foo(NULL), to wywoła wersję
foo(int), która prawie na pewno nie była przez niego
zamierzona.

WSKAŹNIK PUSTY NULLPTR

 Wskaźnik pusty , który nie pokazuje na żaden obiekt w pamięci
zapisujemy jako nullptr – zastępuje makro NULL albo 0

(jest to adres o wartości 0 – adres pierwszej komórki w pamięci
operacyjnej) i jest typu nullptr_t.

 Wskaźnik nullptr nie może być przypisany do typów
całkowitych, ani porównywany z nimi.

 Wskaźnik nullptr może być porównywany z dowolnymi
typami wskaźnikowymi.

STOS I STERTA

 Stos to pamięć zarządzana przez program.

 Zmienne lokalne tworzone w instrukcji blokowej są automatycznie usuwane
przy wychodzeniu z bloku.

 Przykład:
{

int p = 123;
…

}

 Sterta to pamięć, którą zarządza programista.

 Programista przydziela obszar pamięci dla zmiennej operatorem new, ale
musi pamiętać o zwolnieniu tej pamięci operatorem delete.

 Przykład:
{

int *p = new int(123);
…
delete p;

}

STANDARDOWE WEJŚCIE I WYJŚCIE

 W bibliotece standardowej są zdefiniowane cztery obiekty związane ze
standardowym wejściem i wyjściem:

 cin standardowe wejście,

 cout standardowe wyjście,

 clog standardowe wyjście dla błędów,

 cerr niebuforowane standardowe wyjście dla błędów.

 Do czytania ze strumienia wejściowego został zdefiniowany operator >>:
cin >> zmienna;

 Do pisania do strumieni wyjściowych został zdefiniowany operator <<:
cout << wyrażenie;
clog << wyrażenie;
cerr << wyrażenie;

 Operatory czytające >> ze strumienia i piszące << do strumienia można
łączyć kaskadowo w dłuższe wyrażenia (wielokrotne czytanie albo pisanie).

WYJĄTKI

 W przypadku dostarczenia błędnych (niezgodnych ze specyfikacją) argumentów
do funkcji należy zgłosić wyjątek.

 Wyjątki zgłaszamy instrukcją throw:
throw wyjątek;

 Powinno używać się prostych wyjątków zdefiniowanych w pliku nagłówkowym
<stdexcept>:

 domain_error – wartość spoza dziedziny;

 invalid_argument – błędny argument;

 length_error – niedopuszczalna długość;

 out_of_range – wartość spoza zakresu.

 Przykład:
double delta = b * b - 4 * a * c;

if (delta < 0)

throw out_of_range("delta < 0");

double delta = b * b - 4 * a * c;

if (delta < 0)

throw out_of_range("delta < 0");

