KURS JEZYKA C++

|.LtAGODNE WPROWADZENIE DO JEZYKA C++

SPIS TRESCI

Pierwsze programy w C++

Struktura programu w C++

Zmienne ustalone const i constexpr
Jednolita inicjalizacja

Ograniczanie zasiggu zmiennej
Referencje

Napisy typu string

Tablice typu vector

Petla for dla przegladania tablic
Wskaznik pusty nullptr

Standardowe wejscie i wyjscie

PIERWSZE PROGRAMY

B Najprostszy program w jezyku C++:
main() { }

B Program powitalny w jezyku C++:
#include <iostream>

using namespace std;

int main (int argc, char *argv([]) {

cout << "witaj na kursie C++" << endl;

return 0;

PROGRAM, KTORY COS OBLICZA

B Oto program, ktory zamieni milimetry na cale:

#include <iostream>
using namespace std;

int main () {
cerr << "[mm]: ";
double mm;
cin >> mm;
double inch = mm/25.3995;
cout << inch << endl;
cerr << mm << "[mm] = " << inch << "[in]" << endl;

return 0;

STRUKTURA PROGRAMU W C++

B Podziat na pliki:
B nagtdwkowe (rozszerzenie . hpp) z deklaracjami,

B zrodlowe (rozszerzenie . cpp) z definicjami.

B W plikach nagtowkowych stosujemy wtaczanie warunkowe:
#ifndef moje hpp
#define moje hpp
/* wlasciwa zawartoé$é¢ pliku moje hpp */
#endif N

B Aby otrzymac uruchamialny plik wynikowy w jednym z
plikow zrodtowych musi sig znalez¢ definicja funkcji
main ().

STANDARDOWE PLIKI NAGEOWKOWE

B Pliki nagtowkowe odnoszace sie do biblioteki standardowe;

nie maja zadnego rozszerzenia, na przyktad:
#include <iostream>

#include <iomanip>

#include <string>

B Nazwy odnoszace sie do starych plikow nagtowkowych z

jezyka C s3 poprzedzone literg ’c”, na przykiad:
#include <cmath>
#include <cstdlib>

B Wszystkie definicje z biblioteki standardowej s3
umieszczone w przestrzeni nazw std, dlatego wygodnie jest
na poczatku (matego) programu witaczyc ta przestrzen

poleceniem:
using namespace std;

DEDUKCJA TYPOW DANYCH

B W definicji zmiennej z jawnym inicjowaniem mozna uzyc stowa
kluczowego auto zamiast typu — mozna w ten sposob utworzyc
zmienng o typie takim, jak typ inicjujacej wartosci:

auto zmienna = wyrazenie;
B Przykiad:
auto x = a * 2 - le-06;

B Stowo kluczowe decltype moze byc¢ zastosowane w celu okreslenia

typu w czasie kompilacji na podstawie typu wyrazenia:
decltype (wyrazenie) zmienna;

B Przykfad:
decltype(b / 2 + le-6) yv = 5;

STALE, CZYLI ZMIENNE USTALONE

B State s3 oznaczone deklaratorem const w deklaracji:
const TYP stata = wyrazenie;

B Stata nalezy zainicjalizowac podczas deklaracji.

M |nicjalizacja statego argumentu w funkcji nastepuje podczas
wywofania funkgji.

B Do statej nie wolno w programie nic przypisac — jej wartosc
okreslamy tylko podczas inicjalizacji.

B Przyktad:
const double phi = 1.618"7033"7989;

STALEW POROWNANIU

Z MAKRODEFINICJAMI

B Dlaczego state sa bezpieczniejsze od makrodefinicji?
B znany jest typ statej
B mozna okresli¢ zasieg nazwy statej
B nazwa statej jest znana kompilatorowi
B stata to komorka pamieci posiadajaca swoj adres

B tatwiejsza praca z debugerem

B Uzywajmy statych zamiast makrodefinicji !

WYRAZENIA STALE

B State wyrazenia s3 oznaczone deklaratorem constexpr w
deklarac;ji:

constexpr TYP stata = wyrazenie;

B State wyrazenia constexpr sa obliczane przez kompilator na
etapie kompilacji a nie wykonania programu.

B Funkcje tez moga byc constexpr.

B Przyktad:
const double pi = 3.14175927653"7589"793;

TYPY DANYCH

Kazdy nazwany obiekt, ktory deklarujemy w programie musi by¢ jakiegos typu.

B Deklaracja — informuje kompilator, ze dana nazwa reprezentuje obiekt jakiegos
typu, ale nie rezerwuje dla niego miejsca w pamigci.

B Definicja zas — dodatkowo rezerwuje miejsce. Definicja jest miejscem w
programie, gdzie tworzony jest obiekt.

B Systematyka typow w C++:
B typy wbudowane (podstawowe),

B typy zdefiniowane przez uzytkownika,

B typy pochodne.

TYPY O PRECYZY|NIE ZDEFINIOWANE]

SZEROKOSCI

Typy catkowite ze znakiem:
int8 t,intl6 t,int32 t,into4 t.

B Typy catkowite bez znaku:
uint8 t,uintlé t,uint32 t,uinto4d t.

B Najwiekszy typ catkowity dostepny na danym komputerze:
intmax t,uintmax t

B Typy te zostaty umieszczone w pliku nagtowkowym <cstdint> w przestrzeni nazw
std.

B Kodowanie znakow Unicode na konkretnie 16 lub 32 bitach:
charl6 t,char32 t

BINARNA POSTAC LICZBY CALKOWITE]

B Literat binarny: Ob...

B Pisanie binarne:

#include <iostream>

#include <bitset>

int main () {
int a = -58,
std: :cout <<
std::cout <<
std::cout <<

b = a>>0bll, c

"a
"b

"C

" << std::
" << std::
" << std::

= -315;

bitset<8>(a)
bitset<8> (b)
bitset<l6>(c)

<< std::endl;
<< std::endl;
<< std::endl;

JEDNOLITA INICJALIZACJA

B Celem jednolitej inicjalizacji w C++ jest jeden uniwersalny sposob inicjalizacji
danych, wiacznie z kontenerami.

B Skfadnia inicjalizacji z wykorzystaniem nawiasow klamrowych jest teraz
dozwolona we wszystkich przypadkach.

B Przyktady:

int varl {5};

const int con?2 {10};

int arr3[] {1, 2, varl, varl + conl};

const Point pt4 {10, 20};

std: :complex<double> c5 {4.0, 2.0};

std::vector<std::string> cities6t = {
"Wroclaw",
"Cracow"

s

JEDNOLITA INICJALIZACJA

B Jednolita inicjalizacja zabrania inicjalizacji z wykorzystaniem zawezajacych

konwersji, za wyjatkiem niejawnej konwersji, ktdra zaweza typ.

Przyktad:
int arrl[] = { 1, 2, 4.5 };
// OK in C++98; error in C++11

B Jednolita inicjalizacja wymusza inicjalizacje wartoscia (ang. value initialization), co

oznacza, ze nawet lokalne zmienne typdw podstawowych, ktére posiadaja
niezdefiniowana wartos¢ poczatkowa, s3 inicjalizowane zerem (albo wartoscia
nullptr w przypadku wskaznikow).

Przyktady:

double d{}; // d jest rdéwne 0.0

char *ptr{}; // ptr jest rdwne nullptr

int tab[41{}; // tab jest rdéwne [0, 0, 0, 0]

JEDNOLITA INICJALIZACJA

B Inicjalizacja agregatéw za pomoca klamer przebiega doktadnie w taki sam sposob
jak w C++98 i powoduije inicjalizacje sktadowych wedtug kolejnosci ich definicji
w agregacie; liczba elementow na liscie musi by¢ rowna lub mniejsza od ilosci
elementow w agregacie.

B Jednolita inicjalizacja klas czy struktur nie bedacych agregatami powoduje
wywotanie konstruktora (z iloscia i typem parametrow pasujacych do
konstruktora).

OGRANICZANIE ZASIEGU ZMIENNE]

W INSTRUKCJI WARUNKOWVE| IF-ELSE

B Dobrym zwyczajem w programowaniu jest maksymalne ograniczanie zasiegu
zmiennej. Jednak czasami trzeba najpierw otrzymac wartos¢, ktora bedzie mogta
by¢ dalej przetwarzana tylko po spetnieniu okreslonego warunku.

B Przykfad:
if (auto itr(char map.find(c)); itr != char map.end())
{
// itr Jjest poprawny 1 zostanie wykorzystany
// do pewnych operacji
}
else {
// 1tr jest iteratorem konhcowym i nie wolno
// z niego korzystac

}

B Zmiennej lokalnej zadeklarowanej w tuz przed warunkiem w instrukgji
warunkowej mozna potem uzywac w dalszych zagniezdzonych albo kaskadowo
potaczonych instrukcjach warunkowych.

OGRANICZANIE ZASIEGU ZMIENNE]

W INSTRUKCJIWYBORU SWITCH-CASE

B Instrukcje if-else i switch-case wraz z inicjalizatorami to lukier syntaktyczny
(osiagniecie takiego efektu jest mozliwe po ujeciu kodu w dodatkowy nawias
klamrowy).

B Przykfad:
switch (char ¢ (getchar()); c) {
case 'a': move left(); break;
case 's': move back(); break;
case 'w': move fwd(); break;
case 'd': move right(); break;
case 'q': quit game(); break;
// ..
}

B Krotszy cykl zyciowy zmniejsza liczbe zmiennych w zasiegu, co z kolei przektada
sie na wieksza przejrzystosc kodu i jego tatwiejsza refaktoryzacje.

REFERENCJE

B Operatory, ktore umozliwiaja tworzenie typow pochodnych:
B () funkcja
B [] tablica
B * wskaznik
B & referencja
B & r-wyrazenie (wartosc tymczasowa)
B Referencja odnosi sie do istniejacego w pamieci obiektu.
B Referencje trzeba zainicjalizowac.

B Referencja nie moze zmienic obiektu, z ktorym zostatfa
zwigzana w czasie inicjalizacji.

B Referencje implementuje sie jako staty wskaznik.

REFERENCJE

B Definicja referenciji:
typ &ref = obiekt;

B Przylktad referencii:
int x = 4;
int &r = x;

B Referencje maja zastosowanie *g’réwnie jako argumenty funkgji i
jako wartosci zwracane przez funkcje.

B Przyktad funkcji, ktora zamienia miejscami wartosci zewnetrznych

zmiennych:

vold zamiana (double &a, double &b) {
double = ay
a = b;
b = ¢;

NAPISY | tANCUCHY ZNAKOWE

B C-string to napis umieszczony w tablicy typu const char[]
zakonczony znakiem o kodzie 0 '\O"'.

B tancuch znakowy to napis typu st ring przechowywany w
obiekcie.

B Stringi sa zadeklarowane w pliku nagtowkowym <string>.

B Stringi mozna ze soba konkatenowac za pomoca operatorow + i
+=.

B W przypadku stringdow nie trzeba sie martwic o miejsce na napis
— zostanie ono automatycznie zaalokowane.

WEKTOR

B Obiekt klasy vector<T> zastepuje tablice obiektow typu T.

B Szablon klasy vector<> jest zdefiniowany w pliku nagtbwkowym
<vector>.

B Wektor jest zaimplementowany jako tablica dynamiczna.

B Deklaracja:
vector<T> u;
vector<T> v = {t,, t,, ..}/
const vector<T> w = {t,, t,, ..};

B Do komorek wektora odwotujemy sie za pomoca operatora
indeksowania, albo funkcji sktadowej at ():
v[i]
v.at (1)

PETLA FOR OPARTA NA ZAKRESIE

B Zakresy reprezentuja kontrolowang liste pomiedzy dwoma jej punktami.
Kontenery uporzadkowane sa nad zbiorem koncepcji zakresu i dwa
iteratory w kontenerze uporzadkowanym takze definiuja zakres.

B Nowa petla for zostata stworzona do fatwej iteracji po zakresie; jej
ogolna postac jest nastepujaca:
for (TYP &x: kolekcja<TYP>) instrukcja;

B Przyktad:
int moja tablical5] = {1, 2, 3, 4, 5};
for (int &x: moja tablica) { x *= 2; }

B Pierwsza sekcja nowego for (przed dwukropkiem) definiuje zmienna,
ktora bedzie uzyta do iterowania po zakresie. Zmienna ta, tak jak
zmienne w zwykiej petli for, ma zasieg ograniczony do zasiegu petli.

B Druga sekcja (po dwukropku), reprezentuje iterowany zakres.W tym
przypadku, zwykta tablica jest konwertowana do zakresu. Mogtby to byc
na przykfad std: : vector albo inny obiekt spetniajacy koncepcje
zakresu.

PARY

B Klasa pair umozliwia potraktowanie dwoch wartosci jako pojedynczego
elementu.

B Struktura pair zdefiniowana jest w pliku nagtowkowym <utility>.

B Struktura pair zawiera zagniezdzone definicje typow first typei
second type,reprezentujace typy sktadowych odpowiednio dla pol firsti
second.

B Szablon funkcji make pair () umozliwia tworzenie pary wartosci bez jawnego
okreslania typow.

B Przykfady:
std::pair<int, float> p (51, 3e-4);
auto g = std::make pair (53, "witaj"):;

TYP VOID

B Typ void informuje nas o braku typu.

B Typ void jest typem fundamentalnym, jednak nie wolno
zadeklarowac zmiennej typu void.

B Stowo void moze wystapic jako typ prosty w deklaracji typu
ztozonego:

M void *ptr;
oznacza wskaznik do pamiegci na obiekt nieznanego typu;

B void fun ();
oznacza, ze funkcja nie bedzie zwracata zadnego wyniku.

WSKAZNIK PUSTY NULLPTR

B W starszym C++,stata O spetnia dwie funkcje: statej catkowite;j i
pustego wskaznika; programisci obchodzili te niejednoznacznosc za
pomoca identyfikatora NULL zamiast O.

B W jezyku C identyfikator NULL jest makrem preprocesora
zdefiniowanym jako ((void*) 0);w starym C++ niejawna
konwersjaz void* do wskaznika innego typu jest niedozwolona,
wiec nawet takie proste przypisanie jak char *c = NULL
mogtoby byc w tym przypadku btedem kompilac;ji.

B Sytuacja komplikuje sie w przypadku przeciazania:
volid foo (char¥*);
vold foo (int) ;
Gdy programista wywofa foo (NULL), to wywota wersje
foo (int), ktora prawie na pewno nie byfa przez niego
zamierzona.

WSKAZNIK PUSTY NULLPTR

B Wskaznik pusty , ktory nie pokazuje na zaden obiekt w pamigci
zapisujemy jako nullptr - zastepuje makro NULL albo O
(jest to adres o wartosci 0 — adres pierwszej komorki w pamieci
operacyjnej) i jest typu nullptr t.

B Wskaznik nullptr nie moze byc przypisany do typow
catkowitych, ani porownywany z nimi.

B Wskaznik nullptr moze byc porownywany z dowolnymi
typami wskaznikowymi.

STOS | STERTA

Stos to pamiec zarzadzana przez program.

B Zmienne lokalne tworzone w instrukgcji blokowej s3 automatycznie usuwane
przy wychodzeniu z bloku.
B Przyktad:
{
int p = 123;
}
B Sterta to pamiec, ktora zarzadza programista.
B Programista przydziela obszar pamigci dla zmiennej operatorem new, ale

musi pamietac o zwolnieniu tej pamieci operatorem delete.

B Przyktad:

{
int *p = new 1nt(123);

aelete 1o}

STANDARDOWE WEJSCIE | WY]|SCIE

B W bibliotece standardowej s3 zdefiniowane cztery obiekty zwiazane ze
standardowym wejsciem i wyjsciem:

B cin standardowe wejscie,
B cout standardowe wyijscie,
B clog standardowe wyijscie dla btedow,

B cerr niebuforowane standardowe wyjscie dla btedow.

B Do czytania ze strumienia wejsciowego zostat zdefiniowany operator >>:
cin >> zmilenna;

B Do pisania do strumieni wyjsciowych zostat zdefiniowany operator <<:
cout << wyrazenie;
clog << wyrazenie;
cerr << wyrazenie;

B Operatory czytajace >> ze strumienia i piszace << do strumienia mozna
taczy¢ kaskadowo w dtuzsze wyrazenia (wielokrotne czytanie albo pisanie).

delta=b*b-4*a*c
(delta < 0)
out_of range(

WYJATKI

B W przypadku dostarczenia btednych (niezgodnych ze specyfikacja) argumentow
do funkcji nalezy zgtosic wyjatek.

B Wyjatki zglaszamy instrukcja throw:
throw wyjatek;

B Powinno uzywac sie prostych wyjatkow zdefiniowanych w pliku nagtowkowym
<stdexcept>:

B domain error — wartosc spoza dziedziny;
B invalid argument — btedny argument;
B length error — niedopuszczalna dtugosg;

B out of range — wartosc spoza zakresu.

B Przykfad:
double delta = b * b - 4 * a * ¢c;
if (delta < 0)
throw out of range("delta < 0");

