Kurs jezyka C++

15. Operatory, funkcje i klasy narzedziowe z biblioteki standardowej

vV v v vV vV vV v vV Y

Spis tresci

Pary i tuple

Sprytne wskazniki
Ograniczenia liczbowe
Minimum i maksimum
Zamiana wartosci
Operatory porownywania
Typy wyliczeniowe
Szablony zmienne

Folding

Pary

» Szablon struktury pair<> (zdefiniowany w
<utility>) umozliwia potraktowanie dwoch
wartosci jako pojedynczego elementu.

» Para posiada dwa pola: first i second.

» Do pol pary first i second mozna sie dowotywac
za pomocg funkcji szablonowej odpowiednio
get<0> (p) i get<l>(p), gdzie p to para.

» Para posiada konstruktor dwuargumentowy oraz
domyslny i kopiujacy.

» Pary mozna porownywac (operatory == i <).

» Istnieje szablon funkcji make pair () do tworzenia

pary (typy danych sg rozpoznawane przez kompilator
po typach argumentow).

Pary

» Przyktady:
void f (std::pair<int, const char*>);
vold g (std::pair<const int, std::string>);

std::pair<int, const char*> p (44, "witaj”);
f(p):; // wywoluje domy$lny konstruktor kopiujac
g(p); // wywoluje konstruktor szablonowy
g(std::make pair (44, ”witaj”)); // przekazuje dwi
// wartos$ci jako pare z wykorzystaniem konwers]
// typdw

» Pary sa wykorzystywane w kontenerach map i multimap.

Tuple

W C++11 zdefiniowano tuple do przechowywania wielu wartosci a nie
tylko dwoch (szablon tuple<> jest analogig do szblonu pary pair<>).

Tupla posiada wiele ponumerowanych pol, do ktorych dostep mamy za
pomocya funkcji get<i>.

Tupla posiada konstruktor wieloargumentowy oraz domyslny i kopiuj

Tuple mozna porownywac za pomoca operatorow porownan
(porownywanie leksykograficzne).

Istnieje szablon funkcjimake tuple () do tworzenia tupli (typy dan
sg rozpoznawane przez kompilator po typach argumentow).

Istnieje szablon funkcji tie () do tworzenia tupli z referencjami (jako
argumenty podaje sie zmienne).

Szablon tuple size<tupletype>::value stuzy do podania liczby
elementow w tupli.

Szablon tuple element<idx, tupletype>::type stuzy dop
typu elementu o indeksie idx w tupli.

Tuple - przyktad

std: :tuple<double, char, std::string> get student (in

if (id == 0)

return std::make tuple (3.8, 'A', "Lisa Simpso
if (id == 1) N

return std::make tuple(2.9, 'C', "Milhouse Hou
if (id == 2) N

return std::make tuple(l.7, 'D', "Ralph Wiggum"
throw std::invalid argument (make tuple(l.7,"id");
}

// ..
auto student0 = get student (0);

std::cout << "ID: O, "
<< "GPA: " << std::get<0>(student0) << ",
<< "grade: " << std::get<1l>(student() <<

<< "name: " << std::get<2>(student0) << '

Sprytne wskazniki

» Sprytne wskazniki sa zdefiniowane w pliku
nagtowkowym <memory>.

Zastgpienie szablonu auto ptr<>.

» Szablon klasy shared pointer<> - wiele
takich sprytnych wskaznikow moze
przechowywac wskaznik do tego samego
obiektu, tak ze obiekt ten oraz zwigzane z
nim zasoby zostang zwolnione dopiero po
likwidacji ostatniego sprytnego wskaznika.

» Szablon klasy unique pointer<> - tylko
jeden sprytny wskaznik moze przechowywac
wskaznik do tego danego obiektu.

v

Sprytne wskazniki

» Wskazniki typu shared pointer<>implementuja semantyke
sprzatania po niepotrzebnym juz obiekcie.

» Ostatni istniejacy wskaznik wspotdzielony odnoszacy sie do tego
samego obiektu jest odpowiedzialny za zwolnienie tego obiektu i
jego zasobow (uzycie operatora delete).

» Inicjalizacja wskaznika wspotdzielonego:

» za pomocay listy wartosci, na przyktad:
shared ptr<string> pNico/{
new string("nico") };

» za pomocg funkcji make shared():
shared ptr<string> pJutta =
make shared<string>("jutta");

Ograniczenia liczbowe

>){p%/ numeryczne posiadaja ograniczenia zalezne od
platformy i sg zdefiniowane w szablonie
numeric limits<> (zdefiniowany w <limits>,
state preprocesora sa nadal dostepne w <climits> i
<cfloat>).

» Wybrane sktadowe statyczne szablonu
numeric limits<>:
is signed, 1s integer, 1s exact,
1s bounded, is modulo, has 1nf1n1ty,
has quiet NaN
min (), max (), ep51lon().

» Przyktady:
numeric limits<char>::1is signed;
numeric limits<short>::1s modulo;
numeric limits<long>::max () ;
numeric limits<float>::min ()
numeric limits<double>::epsilon () ;

Minimum i maksimum

» Obliczanie wartosci minimalnej oraz maksymalnej:
template <class T>
inline const T& min (const T &a, const T &b)
{ return b<a ? b : a; }
template <class T>
inline const T& max (const T &a, const T &b)
{ return a<b ? b : a; }

» Istniejg tez wersje tych szablonow z komparatorami (funkcja lub

obiekt funkcyjny):

template <class T, class C>

inline const T& min (const T &a, const T &b, C
{ return comp(b, a) ? b : a; }

template <class T , class C>

inline const T& max (const T &a, const T &b, C
{ return comp(a, b) ? b : a; }

Minimum i maksimum

» Przyktad 1:
bool 1nt ptr less (int *p, 1int *q)
return *p<*qg; |}

int x = 33, y = 44;

int *px = &x, *py = &y;

int *pmax = std::max(px, py, 1int ptr less);
» Przyktad 2:

int 1i;

long 1;

// niezgodne typy argumentodw
// 1 = max(i, 1); // BRAD

1 = std::max<long>(i, 1); // OK

Zamiana wartosci

» Zamiana dwoch wartosci:
template <class T>
inline void swap (T &a, T &b) {
T tmp (move(a)),; a = move(b); b = move(
}

» Przyktad:
int x = 33, y = 44;

gtd::swap(x, V) s

Operatory porownywania

» Cztery funkcje szablonowe (zdefiniowane w <utility>) na po
operatorow == i < definiujg operatory porownan !=, <=, >=1 >,

» Funkcje te sa umieszczone w przestrzeni nazw std: :rel ops.
» Przyktad:

namespace std { namespace rel ops { struct porown

class X : private std::rel ops::porown {

// ..
public:
bool operator== (const X &x) const noexcept {
bool operator< (const X &x) const noexcept {

s

// using namespace std::rel ops;
X x1, x2;

if (x1 >= x2) { ..)

if (x1 '= x2) { ..)

Operator statku kosmicznego
porownanie trojwartosciowe

W C++20 wprowadzono operator poréwnania

trojwartosciowego <=> (ang. three-way comparison /
spaceship), ktory dla porownania x<=>y zwraca jedna z

trzech wartosci:

» s
» s
» s

Wynik takiego poréwnania jest porownywalny z 0.

trong ordering::less, gdy X <y;
trong ordering::equal, gdy X ==Y;
trong ordering::greater, gdy X > V.

Przyktad:

vect
vect
if |
else

else

or<int> u {2, 3, 5, 7};
or<int> v {2, 3, 5, 7};

auto res = u <=> v; res < 0)
cout<< "mniejsze" << endl;
if (res == 0)

cout<< "rowne" << endl;

cout<< "wieksze" << endl;

Instrukcja warunkowa
constexpr-if

» W instrukcji warunkowej constexpr-if wartos¢ warunku
musi byc¢ statym wyrazeniem konwertowalnym do typu

bool:
if constexpr (warunek) { .. }
else { .. }

» Jesli wartos¢ wyrazenia statego w wynosi true,
instrukcja we frazie else jest odrzucana (jesli jest

obecna), w przeciwnym razie jest odrzucana instrukcja
po frazie if.

Wyliczenia enum z zasiegiem

» Deklarowanie nazwy wewnatrz nawiasow klamrowych ogranicza
widocznos¢ nazwy do zasiegu definiowanego przez te nawiasy klamrowe.
Nie jest tak w przypadku wyliczen deklarowanych w stylu C++98 za
pomoca enum.

» Przyktad:
enum Color {black, white, red};
// black, white, red sa w tym samym zasiegu co Color
auto white = false; // bi1ad!
// white ma juz deklaracje w tym zasiegu

» W C++11 wyliczenia enum z zasiegiem nie powoduja wyciekania nazw w
ten sposob:

» Przyktad:
enum class Color {black, white, red};
// black, white, red maja zasieg Color
auto white = false; // dobrze
// nie ma innego white w zasiegu
Color c = white; // btad!
// brak wyliczenia o nazwie white w tym zasiegu
Color ¢ = Color::white; // dobrze
auto ¢ = Color::white; // tez dobrze

Wyliczenia enum z zasiegiem

» Redukcja zanieczyszczenia przestrzeni nazw oferowana
przez wyliczenia enum z zasiegiem jest powodem, aby
wybierac je zamiast enum bez zasiegu.

» Wyliczenia enum z zasiegiem sg znacznie mocniej
typowane - brak jest niejawnej konwersji na inny typ
(wyliczenia dla enum bez zasiegu sa w sposob niejawny
konwertowane na typy catkowite).

» W standardzie C++11 wyliczenia enum z zasiegiem moga
byc¢ deklarowane z wyprzedzeniem. Przyktad:
enum class Color;

Wyliczenia enum z zasiegiem

» W celu wydajnego uzycia pamieci kompilatory czesto chca
wybiera¢ najmniejszy podstawowy typ catkowitoliczbowy
dla wyliczenia enum bez zakresu, ktory wystarcza do

reprezentacji zakresu wartosci wyliczenia. Przyktad:
enum Status {

good = 0,

faled = 1,

incomplete = 100,

corrupt = 200,

indeterminate = OxFFFFFFFF
} i

» Domyslnie typem podstawowym wyliczen enum z zasiegiem
jest int. Jezeli domyslny typ nam nie odpowiada, mozemy
go nadpisac. Przyktad:

enum class Status: std::ulnt32 t;

Wyliczenia enum z zasiegiem

» Przyktady:

» using UserInfo = std::tuple< // alias typu
std::string, // nazwa
std::string, // email
std::size t> ; // reputacja

UserInfo uInfo; // obiekt typu tuple

auto val = std::get<l>(uInfo); // pobierz email

p» enum UserInfoFields {uiName, uiEmail, uiReputation};
UserInfo ulInfo; // jak poprzednio

auto val = std::get<uiEmail> (uInfo); // pobierz email

/mienna liczba parametrow
w szablonie

» 0Od C++11 szablony akceptuja zmienng liste parametrow
(rowniez zerowa).

» Grupa parametrow szablonu (ang. parameters pack) to
parametr szablonu, ktory akceptuje zero lub wiecej
argumentow szablonu.

» Grupa parametrow moze sie pojawic tylko raz i
najczesciej wystepuje na koncu listy parametrow.

» Przyktad:
template<typename... Values>
class krotka { ... Y

» Szablon ze zmienng liczbg parametrow nazywa sie
szablonem zmiennym (ang. variadic template).

/mienna liczba parametrow
w szablonie

» Szablony o zmiennej liczbie argumentow mogg takze byc
zastosowane do funkcji, wprowadzajac do nich bezpieczny
typowo mechanizm podobny do zmiennej listy argumentow
w jezyku C.

» Przyktad:
template<typename... Params>
void printf (const string &format,
Params... params)

» Kiedy modyfikator ... jest na lewo od typu (jak w
specyfikacji szablonu), wtedy jest to modyfikator pakujacy:
oznacza, ze liczba typdw moze wynosic¢ zero lub wiecej.
Kiedy modyfikator . .. jest na prawo od typu, jest to
modyfikator rozpakowujacy: powoduje on powielenie
operacji wykonywanych na danym typie (jedna operacja na
kazdy spakowany typ). W powyzszym przyktadzie, funkcja
printf bedzie miata podany parametr dla kazdego
spakowanego typu w Params.

/mienna liczba parametrow
w szablonie

» Parametry zmiennych szablonow nie sg tatwo dostepne
w implementacji funkcji lub klasy. Uzycie zmiennych
szablonow jest czesto rekurencyjne.

» Przyktad:
void printf (const char *s) { ... }
template<typename T, typename... Params>
vold printf (const char *s, T value,
Params... args) {

Sktadanie wyrazen

» Sktadanie wyrazen (ang. fold expressions) skraca zapis
wyrazenia, w ktorym sekwencyjnie jest uzywany ten
sam operator binarny.

» W jezykach funkcyjnych folding to mechanizm
rekurencyjnego przetwarzania uporzadkowanych
kolekcji danych (na przyktad listy) w celu obliczenia
koncowego wyniku przy pomocy funkcji albo operatora
taczacego wszystkie elementy.

» W jezyku C++17 rowniez wprowadzono ten mechanizm.

Sktadanie wyrazen

» Sktadnia foldingu w C++ wykorzystuje nawiasy okragte i
grupy parametrow:

» (Eop...)corozwija sie do postaci:
E, op (op (Ey.1 op Ey))) - prawostronna tacznosc

> op E) co rozwija sie do postaci:

(
(Va4
(((E1 op E;) op ...) op Ey) - lewostronna tacznosc
(
(

» (Eop...op Init) co rozwija sie do postaci:
E, op (op (Ey_; op (Ey op Init)))) - uwzglednia pusta

grupe parametr()w

» (Init op ... op E) co rozwija sie do postaci:
((((Init op E{) op E,) op ...) op Ey) - uwzglednia pusta
grupe parametrow

» Operatorem moze byc jeden z 32 operatorow: +, —, *,
/) %) A’ ’ l, = <, >y, <<y 22, =, -5, *=, /:, %:7 "=,
&=, |_ <<= >>:) !:’ <=, >=, &&, 1y, oy —>%,

Sktadanie wyrazen

» Przyktad 1: od lewej obliczany iloczyn logiczny
template<typename... Args>
bool all (Args... args) {
return (... && args);
}

gool b = all(true, true, true, false);

» Przyktad 2: od prawej liczona suma (dla pustej grupy
elementow wynikiem bedzie 0)

template<typename... Args>
int sum(Argsé&é&... args) {
return (args + ... + 0);

// 0 to element neutralny dla +
}

gout << sum(2, 3, 5, 7) << endl;

Sktadanie wyrazen

» Przyktad 3: uzycie foldingu z lambda
struct zwierze {
virtual std::string glos() const = 0;
i
struct kot: public zwierze {
std::string glos () const override { return "miau miau"; }

b
struct pies: public zwierze {

std::string glos () const override { return "hau hau"; }
b

struct krowa: public zwierze {

std::string glos () const override { return "mu mu"; }
i
template<typename ... Args>
void print (Args ... args) {

([] (const auto& x){ std::cout << x.glos() << std::endl; } (args) ,
t

kot kt;

pies ps;

krowa kr;

print (kt, ps, kr);

