
Kurs języka C++
15. Operatory, funkcje i klasy narzędziowe z biblioteki standardowej

Spis treści

 Pary i tuple

 Sprytne wskaźniki

 Ograniczenia liczbowe

 Minimum i maksimum

 Zamiana wartości

 Operatory porównywania

 Typy wyliczeniowe

 Szablony zmienne

 Folding

Pary

 Szablon struktury pair<> (zdefiniowany w
<utility>) umożliwia potraktowanie dwóch
wartości jako pojedynczego elementu.

 Para posiada dwa pola: first i second.

 Do pól pary first i second można się dowoływać
za pomocą funkcji szablonowej odpowiednio
get<0>(p) i get<1>(p), gdzie p to para.

 Para posiada konstruktor dwuargumentowy oraz
domyślny i kopiujący.

 Pary można porównywać (operatory == i <).

 Istnieje szablon funkcji make_pair() do tworzenia
pary (typy danych są rozpoznawane przez kompilator
po typach argumentów).

Pary

 Przykłady:
void f (std::pair<int, const char*>);
void g (std::pair<const int, std::string>);
…
std::pair<int, const char*> p(44, ”witaj”);
f(p); // wywołuje domyślny konstruktor kopiujący
g(p); // wywołuje konstruktor szablonowy
g(std::make_pair(44, ”witaj”)); // przekazuje dwie

// wartości jako parę z wykorzystaniem konwersji
// typów

 Pary są wykorzystywane w kontenerach map i multimap.

Tuple

 W C++11 zdefiniowano tuple do przechowywania wielu wartości a nie
tylko dwóch (szablon tuple<> jest analogią do szblonu pary pair<>).

 Tupla posiada wiele ponumerowanych pól, do których dostęp mamy za
pomocą funkcji get<i>.

 Tupla posiada konstruktor wieloargumentowy oraz domyślny i kopiujący.

 Tuple można porównywać za pomocą operatorów porównań
(porównywanie leksykograficzne).

 Istnieje szablon funkcji make_tuple() do tworzenia tupli (typy danych
są rozpoznawane przez kompilator po typach argumentów).

 Istnieje szablon funkcji tie() do tworzenia tupli z referencjami (jako
argumenty podaje się zmienne).

 Szablon tuple_size<tupletype>::value służy do podania liczby
elementów w tupli.

 Szablon tuple_element<idx, tupletype>::type służy do podania
typu elementu o indeksie idx w tupli.

Tuple – przykład

std::tuple<double, char, std::string> get_student(int id) {
if (id == 0)

return std::make_tuple(3.8, 'A', "Lisa Simpson");
if (id == 1)

return std::make_tuple(2.9, 'C', "Milhouse Houten");
if (id == 2)

return std::make_tuple(1.7, 'D', "Ralph Wiggum");
throw std::invalid_argument(make_tuple(1.7,"id");

}
// …
auto student0 = get_student(0);
std::cout << "ID: 0, "

<< "GPA: " << std::get<0>(student0) << ", "
<< "grade: " << std::get<1>(student0) << ", "
<< "name: " << std::get<2>(student0) << '\n';

Sprytne wskaźniki

 Sprytne wskaźniki są zdefiniowane w pliku
nagłówkowym <memory>.

 Zastąpienie szablonu auto_ptr<>.

 Szablon klasy shared_pointer<> – wiele
takich sprytnych wskaźników może
przechowywać wskaźnik do tego samego
obiektu, tak że obiekt ten oraz związane z
nim zasoby zostaną zwolnione dopiero po
likwidacji ostatniego sprytnego wskaźnika.

 Szablon klasy unique_pointer<> – tylko
jeden sprytny wskaźnik może przechowywać
wskaźnik do tego danego obiektu.

Sprytne wskaźniki

 Wskaźniki typu shared_pointer<> implementują semantykę

sprzątania po niepotrzebnym już obiekcie.

 Ostatni istniejący wskaźnik współdzielony odnoszący się do tego

samego obiektu jest odpowiedzialny za zwolnienie tego obiektu i
jego zasobów (użycie operatora delete).

 Inicjalizacja wskaźnika współdzielonego:

 za pomocą listy wartości, na przykład:
shared_ptr<string> pNico{

new string("nico")};

 za pomocą funkcji make_shared():

shared_ptr<string> pJutta =

make_shared<string>("jutta");

Ograniczenia liczbowe

 Typy numeryczne posiadają ograniczenia zależne od
platformy i są zdefiniowane w szablonie
numeric_limits<> (zdefiniowany w <limits>,
stałe preprocesora są nadal dostępne w <climits> i
<cfloat>).

 Wybrane składowe statyczne szablonu
numeric_limits<>:
is_signed, is_integer, is_exact,
is_bounded, is_modulo, has_infinity,
has_quiet_NaN,
min(), max(), epsilon().

 Przykłady:
numeric_limits<char>::is_signed;
numeric_limits<short>::is_modulo;
numeric_limits<long>::max();
numeric_limits<float>::min();
numeric_limits<double>::epsilon();

Minimum i maksimum

 Obliczanie wartości minimalnej oraz maksymalnej:
template <class T>
inline const T& min (const T &a, const T &b)

{ return b<a ? b : a; }
template <class T>
inline const T& max (const T &a, const T &b)

{ return a<b ? b : a; }

 Istnieją też wersje tych szablonów z komparatorami (funkcja lub
obiekt funkcyjny):
template <class T, class C>
inline const T& min (const T &a, const T &b, C comp)

{ return comp(b, a) ? b : a; }
template <class T , class C>
inline const T& max (const T &a, const T &b, C comp)

{ return comp(a, b) ? b : a; }

Minimum i maksimum

 Przykład 1:
bool int_ptr_less (int *p, int *q) {

return *p<*q; }
…
int x = 33, y = 44;
int *px = &x, *py = &y;
int *pmax = std::max(px, py, int_ptr_less);

 Przykład 2:
int i;
long l;
…
// niezgodne typy argumentów
// l = max(i, l); // BŁĄD
…
l = std::max<long>(i, l); // OK

Zamiana wartości

 Zamiana dwóch wartości:
template <class T>
inline void swap (T &a, T &b) {

T tmp(move(a)); a = move(b); b = move(tmp);
}

 Przykład:
int x = 33, y = 44;
…
std::swap(x, y);

Operatory porównywania

 Cztery funkcje szablonowe (zdefiniowane w <utility>) na podstawie
operatorów == i < definiują operatory porównań !=, <=, >= i >.

 Funkcje te są umieszczone w przestrzeni nazw std::rel_ops.

 Przykład:
namespace std { namespace rel_ops { struct porown {}; } }

class X : private std::rel_ops::porown {
// …

public:
bool operator== (const X &x) const noexcept { … }
bool operator< (const X &x) const noexcept { … }

};
…
// using namespace std::rel_ops;
X x1, x2;
…
if (x1 >= x2) { … }
…
if (x1 != x2) { … }
…

Operator statku kosmicznego

– porównanie trójwartościowe

 W C++20 wprowadzono operator porównania
trójwartościowego <=> (ang. three-way comparison /
spaceship), który dla porównania x<=>y zwraca jedną z
trzech wartości:

 strong_ordering::less, gdy x < y;

 strong_ordering::equal, gdy x == y;

 strong_ordering::greater, gdy x > y.

 Wynik takiego porównania jest porównywalny z 0.

 Przykład:
vector<int> u {2, 3, 5, 7};
vector<int> v {2, 3, 5, 7};
if (auto res = u <=> v; res < 0)

cout<< "mniejsze" << endl;
else if (res == 0)

cout<< "rowne" << endl;
else

cout<< "wieksze" << endl;

Instrukcja warunkowa

constexpr-if

 W instrukcji warunkowej constexpr-if wartość warunku

musi być stałym wyrażeniem konwertowalnym do typu
bool:
if constexpr (warunek) { … }

else { … }

 Jeśli wartość wyrażenia stałego w wynosi true,

instrukcja we frazie else jest odrzucana (jeśli jest

obecna), w przeciwnym razie jest odrzucana instrukcja
po frazie if.

Wyliczenia enum z zasięgiem

 Deklarowanie nazwy wewnątrz nawiasów klamrowych ogranicza
widoczność nazwy do zasięgu definiowanego przez te nawiasy klamrowe.
Nie jest tak w przypadku wyliczeń deklarowanych w stylu C++98 za
pomocą enum.

 Przykład:
enum Color {black, white, red};
// black, white, red są w tym samym zasięgu co Color
auto white = false; // błąd!
// white ma już deklarację w tym zasięgu

 W C++11 wyliczenia enum z zasięgiem nie powodują wyciekania nazw w
ten sposób:

 Przykład:
enum class Color {black, white, red};
// black, white, red mają zasięg Color
auto white = false; // dobrze
// nie ma innego white w zasięgu
Color c = white; // błąd!
// brak wyliczenia o nazwie white w tym zasięgu
Color c = Color::white; // dobrze
auto c = Color::white; // też dobrze

Wyliczenia enum z zasięgiem

 Redukcja zanieczyszczenia przestrzeni nazw oferowana

przez wyliczenia enum z zasięgiem jest powodem, aby

wybierać je zamiast enum bez zasięgu.

 Wyliczenia enum z zasięgiem są znacznie mocniej

typowane – brak jest niejawnej konwersji na inny typ

(wyliczenia dla enum bez zasięgu są w sposób niejawny

konwertowane na typy całkowite).

 W standardzie C++11 wyliczenia enum z zasięgiem mogą

być deklarowane z wyprzedzeniem. Przykład:
enum class Color;

Wyliczenia enum z zasięgiem

 W celu wydajnego użycia pamięci kompilatory często chcą

wybierać najmniejszy podstawowy typ całkowitoliczbowy

dla wyliczenia enum bez zakresu, który wystarcza do

reprezentacji zakresu wartości wyliczenia. Przykład:
enum Status {

good = 0,

faled = 1,

incomplete = 100,

corrupt = 200,

indeterminate = 0xFFFFFFFF

};

 Domyślnie typem podstawowym wyliczeń enum z zasięgiem
jest int. Jeżeli domyślny typ nam nie odpowiada, możemy

go nadpisać. Przykład:
enum class Status: std::uint32_t;

Wyliczenia enum z zasięgiem

 Przykłady:

 using UserInfo = std::tuple< // alias typu

std::string, // nazwa

std::string, // email

std::size_t> ; // reputacja

…

UserInfo uInfo; // obiekt typu tuple

…

auto val = std::get<1>(uInfo); // pobierz email

 enum UserInfoFields {uiName, uiEmail, uiReputation};

UserInfo uInfo; // jak poprzednio

…

auto val = std::get<uiEmail>(uInfo); // pobierz email

Zmienna liczba parametrów

w szablonie

 Od C++11 szablony akceptują zmienną listę parametrów
(również zerową).

 Grupa parametrów szablonu (ang. parameters pack) to
parametr szablonu, który akceptuje zero lub więcej
argumentów szablonu.

 Grupa parametrów może się pojawić tylko raz i
najczęściej występuje na końcu listy parametrów.

 Przykład:
template<typename... Values>

class krotka { …… };

 Szablon ze zmienną liczbą parametrów nazywa się
szablonem zmiennym (ang. variadic template).

Zmienna liczba parametrów

w szablonie

 Szablony o zmiennej liczbie argumentów mogą także być
zastosowane do funkcji, wprowadzając do nich bezpieczny
typowo mechanizm podobny do zmiennej listy argumentów
w języku C.

 Przykład:
template<typename... Params>

void printf(const string &format,

Params... params);

 Kiedy modyfikator ... jest na lewo od typu (jak w
specyfikacji szablonu), wtedy jest to modyfikator pakujący:
oznacza, że liczba typów może wynosić zero lub więcej.
Kiedy modyfikator ... jest na prawo od typu, jest to
modyfikator rozpakowujący: powoduje on powielenie
operacji wykonywanych na danym typie (jedna operacja na
każdy spakowany typ). W powyższym przykładzie, funkcja
printf będzie miała podany parametr dla każdego
spakowanego typu w Params.

Zmienna liczba parametrów

w szablonie

 Parametry zmiennych szablonów nie są łatwo dostępne

w implementacji funkcji lub klasy. Użycie zmiennych

szablonów jest często rekurencyjne.

 Przykład:
void printf(const char *s) { …… }

template<typename T, typename... Params>

void printf(const char *s, T value,

Params... args) {

……

printf(……, args...);

……

}

Składanie wyrażeń

 Składanie wyrażeń (ang. fold expressions) skraca zapis

wyrażenia, w którym sekwencyjnie jest używany ten

sam operator binarny.

 W językach funkcyjnych folding to mechanizm

rekurencyjnego przetwarzania uporządkowanych

kolekcji danych (na przykład listy) w celu obliczenia

końcowego wyniku przy pomocy funkcji albo operatora

łączącego wszystkie elementy.

 W języku C++17 również wprowadzono ten mechanizm.

Składanie wyrażeń

 Składnia foldingu w C++ wykorzystuje nawiasy okrągłe i
grupy parametrów:

 (E op ...) co rozwija się do postaci:
(E1 op (... op (EN-1 op EN))) – prawostronna łączność

 (... op E) co rozwija się do postaci:
(((E1 op E2) op ...) op EN) – lewostronna łączność

 (E op ... op Init) co rozwija się do postaci:
(E1 op (... op (EN−1 op (EN op Init)))) – uwzględnia pustą
grupę parametrów

 (Init op ... op E) co rozwija się do postaci:
((((Init op E1) op E2) op ...) op EN) – uwzględnia pustą
grupę parametrów

 Operatorem może być jeden z 32 operatorów: +, -, *,
/, %, ^, &, |, =, <, >, <<, >>, +=, -=, *=, /=, %=, ^=,
&=, |=, <<=, >>=, ==, !=, <=, >=, &&, ||, ,, .*, ->*.

Składanie wyrażeń

 Przykład 1: od lewej obliczany iloczyn logiczny
template<typename... Args>
bool all(Args... args) {

return (... && args);
}
…
bool b = all(true, true, true, false);

 Przykład 2: od prawej liczona suma (dla pustej grupy
elementów wynikiem będzie 0)
template<typename... Args>
int sum(Args&&... args) {

return (args + ... + 0);
// 0 to element neutralny dla +

}
…
cout << sum(2, 3, 5, 7) << endl;

Składanie wyrażeń

 Przykład 3: użycie foldingu z lambdą
struct zwierze {

virtual std::string glos() const = 0;
};
struct kot: public zwierze {

std::string glos() const override { return "miau miau"; }
};
struct pies: public zwierze {

std::string glos() const override { return "hau hau"; }
};
struct krowa: public zwierze {

std::string glos() const override { return "mu mu"; }
};
template<typename ... Args>
void print(Args ... args) {

([](const auto& x){ std::cout << x.glos() << std::endl; }(args) , ...);
}
…
kot kt;
pies ps;
krowa kr;
print(kt, ps, kr);

