
Lab 6: Polynomials [deadline: 18th April 2024]

Prologue

Polynomial function is function of a single independent variable, in which that variable can appear

more than once, raised to any integer power. A polynomial of degree n is a function of the form

f(x) = anxn + an-1xn-1 + … + a2x2 + a1x + a0

where the a’s are real numbers (sometimes called the coefficients of the polynomial). The degree of

a polynomial is the highest power of x in its expression.

Task

Define the classes polynomial to store polynomial with a certain degree. Design this class so that

the polynomial degree and its coefficients are non-public (coefficients keep in the table created on

the heap). You must define methods that allow you to read and set these fields: define the member

function to read the polynomial degree, and define the indexing operator for reading and writing

coefficients. If the program attempted to set the coefficient with the highest power to 0, an

exception should be raised (except when the polynomial degree is equal to 0).
 class polynomial {

 private:

 int n; // the degree of the polynomial

 double *a; // the coefficients of the polynomial

 // ...

 };

Coefficients of the polynomial let be written in the table according to indexes, so the first coefficient

a0 is written in the cell a[0].

Define a non-argument constructor and constructor with a list of coefficients in the class

polynomial. Implement copying and moving in the class.
 class polynomial {

 public:

 polynomial(int deg=0, double coef=1.0); // monomial

 polynomial(int deg, const double coef[]);

 polynomial(initalizer_list<double> coef);

 polynomial(const polynomial &poly); // copy constructor

 polynomial(polynomial &&poly); // move constructor

 polynomial& operator = (const polynomial &poly); // copy assignment

 polynomial& operator = (polynomial &&poly); // move assignment

 ~polynomial(); // destructor

 // ...

 };

The destructor should release the memory allocated to remember the polynomial coefficients.

Define addition, subtraction, and multiplication operators for polynomials (multiplication by

constant and by another polynomial), and the function to calculating the value of polynomial at a

given point using the Horner scheme.

 class polynomial {

 public:

 friend polynomial operator+ (const polynomial &p, const polynomial &q);

 friend polynomial operator - (const polynomial &p, const polynomial &q);

 friend polynomial operator * (const polynomial &p, const polynomial &q);

 friend polynomial operator * (double c);

 polynomial& operator += (const polynomial &q);

 polynomial& operator -= (const polynomial &q);

 polynomial& operator *= (const polynomial &q);

 polynomial& operator *= (double c);

 double operator () (double x) const; // Horner scheme

 double operator [] (int i) const; // coefficient ai

 // ...

 };

The polynomial class should make it easy to read the coefficients standing at monomials using the

indexing operator. Remember about stream operators for reading and writing for polynomial.

Finally, write a program that reliably tests all operations on polynomials. All objects in your program

should be created on the stack.

Whenever we encounter any errors, ambiguities or contradictions in the program, this should be

signaled by an exception.

