
KURS JĘZYKA C++
10. SZABLONY

SPIS TREŚCI

 Szablony w programowaniu

 Definicja szablonu

 Parametry w szablonie

 Konkretyzowanie szablonu

 Przeciążanie szablonów funkcji

 Dopasowanie i generowanie funkcji szablonowych

 Szablony funkcji z biblioteki standardowej

 Użycie argumentów szablonu do specyfikowania strategii

 Domyślne parametry szablonu

 Specjalizacja szablonów klas

SZABLONY

 Szablon (inaczej wzorzec) to przezroczysta dla programu
konstrukcja językowa, na podstawie której kompilator
jest w stanie wygenerować zbiór podobnych funkcji lub
podobnych klas.

 Szablon zastępuje w programowaniu żmudne operacje
kopiowania, wklejania i drobne modyfikacji kodu.

 Szablony są sparametryzowane przede wszystkim za
pomocą typów (ale także pewnych wartości).

 Prawie wszystkie klasy i funkcje z biblioteki
standardowej są szablonami.

SZABLONY

 Szablony bezpośrednio wspomagają programowanie
uogólnione, czyli programowanie z użyciem typów jako
parametrów.

 Za pomocą szablonów można łatwo reprezentować i łączyć
ze sobą ogólne koncepcje programistyczne (algorytmy oraz
struktury danych).

 Szablon zależy tylko od tych właściwości typów swoich
parametrów, których rzeczywiście używa.

 Argumentami szablonów mogą być i często są typy
wbudowane.

 Kompozycje składane z szablonów są bezpieczne pod
względem typów, ale niestety wymagań szablonu co do jego
argumentów nie da się prosto i bezpośrednio wyrazić w
kodzie.

SZABLONY

 Możemy definiować szablony funkcji i szablony klas.
 Szablony definiuje się umieszczając przed definicją funkcji

lub klasy frazę template z listą parametrów w
nawiasach kątowych.

 Przykład:
template <typename T>
T maksimum(const T &a, const T &b)
{

return a < b ? b : a;
}
Na podstawie tej definicji kompilator umie wygenerować
funkcję maksimum() dla obiektów różnych typów (dla
których zdefiniowano operator porównywania
operator<).

OKREŚLENIE TYPU TYPENAME

 Słowo typename wskazuje, że następujący po nim
identyfikator jest nazwą typu.

 Przykład:
template <typename T>
class MyClass {

typename T::SubType *ptr;
// …

};
W przykładzie tym ptr jest wskaźnikiem na obiekt
typu T::SubType (a nie iloczynem składowej
statycznej T::SubType przez ptr).

PARAMETRY SZABLONU

 Parametr szablonu może być:
 typem (oznacza się go jako class lub typename),

 wartością porządkową (może to być char, int itp., oraz
wskaźnik),

 wartością wcześniejszego typu będącego parametrem
szablonu.

 Szablon może mieć wiele parametrów.

 Przykłady:
template <typename T, int rozm>

class Bufor {…};

template <typename T, T wart>

class Schowek {…};

DEFINIOWANIE SZABLONU

 Szablon definiuje się w pliku nagłówkowym, gdyż
kompilator musi znać jego definicję, aby na jej
podstawie wygenerować funkcję lub klasę szablonową.

 Szablon funkcji lub klasy może się pojawiać wielokrotnie
w pliku (poprzez włączenie pliku nagłówkowego) i nie
spowoduje błędu (tak jak definicja funkcji wbudowanej).

SZABLON FUNKCJI

 Funkcja szablonowa to funkcja wygenerowana przez
kompilator na podstawie szablonu funkcji.

 Parametrem szablonu funkcji jest przede wszystkim
nazwa typu (wartości zwykle przekazuje się jako
argumenty do funkcji).

 Kompilator wygeneruje funkcję szablonową, gdy
napotka jej wywołanie albo gdy w programie używamy
adresu takiej funkcji.

 W szablonie funkcji może wystąpić deklarator inline.

KONKRETYZOWANIE SZABLONU FUNKCJI

 Kompilator wygeneruje funkcję szablonową, gdy napotka jej wywołanie
lub pobranie adresu funkcji.

 Kompilator sprecyzuje typ funkcji szablonowej na podstawie jej
argumentów wywołania (typ rezultatu jest nieistotny).

 Można też jawnie wskazać typ funkcji szablonowej.

 Przykłady:
maksimum(x, 192); // x jest typu int

maksimum<double>(2.72, x); // x jest typu int

char (*fun)(const char&, const char&)

= maksimum;

maksimum(x, ’x’); // błąd - maksimum(int, char);

DOPASOWANIE I GENEROWANIE FUNKCJI
SZABLONOWYCH

 Dopasowanie funkcji do szablonu następuje poprzez typy argumentów
wywołania funkcji (typ rezultatu nie ma znaczenia).

 Jawną specyfikację stosuje się często w odniesieniu do typu wyniku.
Przykład:
template <class T, class U>
T impl_cast(U u)

{ return u; }
…
void fun (int i)
{

impl_cast(i); // błąd – nieznane T
impl_cast<double>(i); // T to double
impl_cast<char, double>(i); // ok
impl_cast<char*, int>(i); // błąd – rzutowanie

// int na char*
}

PRZECIĄŻANIE SZABLONU FUNKCJI

 Szablon funkcji można przeciążać (podobnie jak
samą funkcję).

 Można zadeklarować kilka szablonów funkcji o takiej
samej nazwie, a także kombinację szablonów i
zwykłych funkcji.

 Reguły rozstrzygania przeciążenia w obecności
szablonów funkcji są uogólnieniem zwykłych reguł
rozstrzygania przeciążenia funkcji:
 najpierw dla każdego szablonu znajduje się specjalizację,

która jest najlepsza dla ciągu argumentów funkcji;
 następnie stosuje się do tych specjalizacji i wszystkich

zwykłych funkcji normalne reguły rozstrzygania
przeciążenia.

SZABLONY KLAS

 Klasa szablonowa to klasa wygenerowana przez
kompilator na podstawie szablonu klasy.

 Parametry formalne szablonu (te w nawiasach
kątowych) i parametry aktualne (konkretny typ dla klasy
szablonowej).

 Nazwa szablonu klasy musi być unikalna.

 Szablon klasy powinien mieć zasięg globalny (może
znajdować się w jakiejś przestrzeni nazw) – nie powinno
się zagnieżdżać definicji jednego szablonu w drugim.

SZABLONY KLAS

 Przykład szablonu klasy:
template <typename T>
class schowek {

T tajne;
public:

schowek (const T &t) : tajne(t) {}
schowek & operator= (const schowek s) {

if (&s != this) tajne = s.tajne;
return *this; }

T wartosc () { return tajne; }
};

 Przykłady klas szablonowych:
schowek<int> pon(3), wto(7);
schowek<char> sro(’s’);
schowek<string> czw(”czwartek”);

DEFINIOWANIE SZABLONU KLASY

 Składowe szablonu klasy definiuje się tak samo jak dla
zwykłej klasy.

 Funkcje składowe szablonu można definiować poza klasą
(ale tak by kompilator widział te definicje).

 Składowe szablonu klasy same są szablonami i są
sparametryzowane parametrami swoich szablonów klas.

DEFINIOWANIE SZABLONU KLASY

Przykład szablonu klasy:

template <typename T, int rozm>

class stos {

T tab[rozm];

int ile;

public:

void wstaw (const T &x);

T zdejmij();

int rozmiar() const noexcept { return ile; }

};

template <typename T, int rozm>

void stos<T, rozm>::wstaw(const T &x) {

if (ile>=rozm) throw std::out_of_range(”przepełnienie stosu”);

tab[ile++] = x;

}

template <typename T, int rozm>

T stos<T, rozm>::zdejmij() {

if (ile<=0) throw std::out_of_range(”wyczerpanie stosu”);

return tab[--ile];

}

UŻYCIE ARGUMENTÓW SZABLONU
DO SPECYFIKOWANIA STRATEGII

 Problem: sortowanie łańcuchów względem różnych kryteriów
porównywania.

 Rozwiązanie:
template <typename T, typename C>
int porownaj (const Napis<T> &a, const Napis<T> &b) {

for (int i = 0; i < a.len() and i < b.len(); i++)
if (! C::eq(a[i], b[i]))

return C::lt(a[i], b[i]) ? -1 : 1;
return a.len() - b.len();

}
template <typename T>
class por { public:

static bool eq (T a, T b) { return a == b; }
static bool lt (T a, T b) { return a < b; }

};
…
void f(Napis<char> x, Napis<char> y) {

porownaj<char, por<char>>(x, y);
…

}

 Spr przykład z poprzedniego slajdu

DOMYŚLNE PARAMETRY SZABLONU

 Szablon może mieć parametry domyślne (podobnie jak
funkcja może mieć argumenty domyślne). Przykład:
template <typename T, typename C=por<T>>

int porownaj (const Napis<T> &a, const Napis<T> &b)

{…}

 Technika dostarczania strategii jako argumentu wzorca
jest powszechnie wykorzystywana w bibliotece
standardowej.

 Parametry wzorca służące do dostarczania strategii
nazywa się trejtami (ang. traits). Przykładami trejtów
są iteratory i alokatory.

SPECJALIZACJA SZABLONÓW KLAS

 Tworząc specjalizację szablonu jakiejś klasy, możemy w
niej zdefiniować inne pola i metody niż w szablonie
ogólnym.

 Mając szablon klasy, można w nim wyspecjalizować tylko
wybrane funkcje składowe, zamiast tworzyć specjalizację
całej klasy.

 W rozstrzyganiu przeciążenia preferuje się wersję
najbardziej specjalizowaną.

SPECJALIZACJA SZABLONÓW KLAS

 Alternatywne definicje szablonu nazywa się
specjalizacjami.

 Przykład:
template<typename T>

class Wektor {…};

// częściowa specjalizacja

template<typename T>

class Wektor<T*> {…};

// pełne specjalizacje

template<const char*>

class Wektor<const char*> {…};

template<>

class Wektor<void*> {…};

SZABLONY KLAS

 Uwaga na składniki statyczne w szablonie.

 Instrukcje typedef i enum w szablonie klasy.

 Przyjaźń a szablony klas…

 przyjaciel ogólny

 przyjaciel szablonowy

 zaprzyjaźnione operatory we/wy

 Dziedziczenie a szablony klas…

ALIASY SZABLONÓW

 Możliwe jest definiowanie aliasów dla szablonów, nawet
z niezdefiniowanymi parametrami szablonowymi.

 Przykład:
template <typename first,

typename second, int third>

class SomeType;

template <typename second>

using TypedefName =

SomeType<double, second, 5>;

	Slajd 1: Kurs języka C++
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23

