KURS JEZYKA C++

I'1.STRUMIENIE

SPIS TRESC]

O Pojecie strumienia

o Strumienie w bibliotece standardowej
o0 Operatory strumieniowe >> | <<
o Hierarchia klas strumieni

o Sterowanie formatem

o Manipulatory

o Nieformatowane operacje we/wy
o Btedy w strumieniach

o Strumienie zwigzane z plikami

o Strumienie zwigzane z tancuchami
o Synchronizacja strumieni

STRUMIENIE

o Strumien to obiekt
kontrolujacy przeptyw
danych.

o Strumien wejsciowy
transportuje dane do
programu.

o Strumien wyjsciowy
transportuje dane poza
program.

o Strumienie dzielimy na:

O wejsciowe i wyjsciowe,

o binarne i tekstowe.

strumien wejsciowy

strumien wyjsciowy

OBIEKTY STRUMIENI
W BIBLIOTECE STANDARDOWE]J

o Klasy zdefiniowane w bibliotece <iostream> s3
szablonami.

o Klasa i stream to strumien wejsciowy bedacy instancja
szablonu klasy basic istream<char>.

o Klasa ostream to strumien wyjsciowy bedgcy instancjg
szablonu klasy basic ostream<char>.

STRUMIENIE
W BIBLIOTECE STANDARDOWE]J

o Biblioteka ze strumieniami we/wy ogdlnego przeznaczenia to
<lostream>.

o Biblioteka ze strumieniami we/wy przeznaczona do operacji na plikach
to <fstream>.

o Biblioteka ze strumieniami we/wy przeznaczona do operacji na
obiektach klasy string to <sstream>.

o Strumienie tekstowe zdefiniowane w <iostream> (pracujgce na
danych typu char) zwigzane ze standardowym we/wy to:

* cin —standardowe wejscie (zwykle klawiatura),

* cout —standardowe wyjscie (zwykle ekran),

* clog - standardowe wyijscie dla btedéw (zwykle ekran),
 cerr — niebuforowane wyjscie dla btedow,

0 wcin, wcout, wclog, wcerr —strumienie analogiczne do
powyzszych, ale pracujgce na danych typu wchar t.

OPERATORY >> | << ZWYJMOWANIA ZE |

WSTAWIANIA DO STRUMIENIA)

o Dla strumieni wejsciowych pracujacych w trybie tekstowym
zostat zdefiniowany operator >> wyjmowania danych ze
strumienia.

o Dla strumieni wyjsciowych pracujgcych w trybie tekstowym
zostat zdefiniowany operator << wstawiania danych do
strumienia.

o Operatory >> i << zawsze zwracajg referencje do strumieni
na ktorych pracujg, dlatego operatory te mozna tgczyc
kaskadowo przy czytaniu lub pisaniu.

o Operatory >> i << automatycznie dokonujg konwersiji z
danych tekstowych na binarne i na odwrot.

o Nalezy pamietac o priorytecie operatora >> i << gdy uzywa
sie wyrazen. Przyktad:
cerr << (a*x+b) << endl;

DO PISANIA

oilint 1 = 7;
std::cout << i << endl;
// wyjscie: 7
Ostd::string s = "Abecadio”;
std::cout << s << endl;
// wyjscie: Abecadlo

Ostd::bitset<10> flags(7);
std::cout << flags << endl;
// wyjscie: 0000000111

Ostd::complex<float> c(3.1,2.7);
std: :cout << ¢ << endl;
// wyjdcie: (3.1,2.7)

DO CZYTANIA

oilint 1 = 0;
std::cin >> 1;
// wejscie: odczytanie wartosci int
Ostd::string s;
std::cin >> s;
// wejdcie: odczytanie napisu
string

O double d = 0.0;
std: :complex<double> c;
std::cin >> d >> c;
// wejsdcie: sekwencyjne odczytanie
// liczby rzeczywiste] 1 zespolone]

"OPERATORY STROUMTENTOWE >> T
ZDEFINIOWANE PRZEZ UZYTKOWNIKA

o Dla typoéw zdefiniowanych przez uzytkownika mozna zdefiniowac wtasne
operatory wstawiania do i wyjmowania ze strumienia:
class Typ {..};
// operator wyjmowania ze strumienia
istream& operator >> (istream &os, Typ &x);
// operator wstawiania do strumienia
ostreamé& operator << (ostream &os, const Typ &Xx);

o Nalezy pamietac¢ o zwrdceniu referencji do strumienia, na ktorym sie
pracuje.

o Operatorow wstawiania do i wyjmowania ze strumienia nie dziedziczy sie.

o Operatory wstawiania do i wyjmowania ze strumienia nie mogg byc
wirtualne.

REALIZUJACYCH OPERACIJE WE/WY

STEROWANIE FORMATEM

o Podczas operacji na strumieniu uzywane sg pewne
domniemania dotyczgce formatu danych —
domniemania te zapisane sg w strumieniu we fladze
stanu formatowania.

o Klasa w ktorej umieszczono flage stanu formatowania to
ios base —typ takiej flagito fmtflags.

STEROWANIE FORMATEM

o Flagi odpowiadajgce za sposob formatowania:
* ignorowanie biatych znakow skipws;
e justowanie left, right, internal (maska adjustfield);
e petne nazwy boolowskie boolalpha;

* reprezentacja liczb catkowitych dec, oct, hex (maska
basefield);

* uwidocznienie podstawy reprezentacji showbase;
» kropka dziesietna showpoint;

e duze litery w liczbach uppercase;

* znak + w liczbach dodatnich showpos;

* reprezentacja liczb rzeczywistych scientific, fixed (maska
floatfield);

e buforowanie unibuf.

STEROWANIE FORMATEM

o Zmiane regut formatowania dokonuje sie nastepujacymi metodami:
fmtflags flags () const;
fmtflags flags (fmtflags fls);
fmtflags setf (fmtflags f1l);
fmtflags setf (fmtflags fl, fmtflags mask);
fmtflags unsetf (fmtflags fl);

streamsize width () const;
streamsize width (streamsize w);
streamsize precision () const;

streamsize precilision (streamsize p);
o Uwaga —metoda width (w) ma dziatanie jednorazowe.

o Przyktady:
fmtflags £ = cout.flags{():
cout.unsetf (10s::boolalpha);
cout.setf (10s::showpos|i0os::showpoint) ;
cout.setf (1ios::hex,10s::basefield);

cout.flags (f);

MANIPULATORY

o Manipulatory, zdefiniowane w pliku zagtéwkowym <iomanip> to
specjalne obiekty, ktore mozna umiesci¢ w strumieniu za pomoca
operatorow >> albo <<, ktére powodujg zmiane regut formatowania
lub inne efekty uboczne na strumieniu.

o Standardowe manipulatory bezargumentowe:
endl, ends,
hex, dec, oct,
fixed, scientific,
left, right, internal,
skipws, noskipws, ws,
boolalpha, noboolalphag,
showpoint, noshowpoilnt,
showpos, nowhowpos,
showbase, noshowbase,
uppercase, nouppercase,
unitbuf, nounitbuf,
flush.

MANIPULATORY

o Standardowe manipulatory sparametryzowane:
setw(1int),
setprecision(int),
setfill (char),setfill (wchar t),
setiosflags (fmtflags),
resetiosflags (fmtflags).

o Przyktady:
cout << setiosflags(ios base::boolalpha);

MANIPULATORY

o Wtasne manipulatory bezparametrowe definiuje sie w postaci
funkciji.

o Przyktad:
inline ostream& tab (ostream &os)

{

return os << ”\t”;

J

cout << ”"x:” << tab << tab << x << endl;

MANIPULATORY

o Wtasne manipulatory sparametryzowane definiuje sie w postaci klas:

» klasa ta musi posiadac konstruktor tworzgcy chwilowy obiekt
manipulatora,

* o0raz zaprzyjazniony operator strumieniowy >> albo << uzywajacy
obiektu naszej klasy.

o Przyktad:
struct liczba {
int wart, podst;
friend ostreamé& operator <<
(ostream &os, const liczba &licz)
{ /> . %/}
public:
liczba (int wart, int podst)
: wart(w), podst (p)
{ /> . %/}
I

cout << "y = " << liczba(y, 7) << endl;

NIEFORMATOWANE
OPERACJE WE/WY

o Formatowane operacje we/wy przeprowadzane s3
za posrednictwem operatorow >> i <<, ktore

przeksztatcajg dane z postaci tekstowej na binarna
(czytanie) albo z postaci binarnej na tekstowa
(pisanie).

o Sg jednak sytuacje, gdy formatowanie nie jest nam
potrzebne...

o Nieformatowane operacje we/wy sg umieszczone w
klasach istreamiostream (oraz uzupetnione

kilkoma funkcjami sktadowymi w klasie
iostream).

NIEFORMATOWANE CZYTANIE (WYJIMOWANIE
ZE STRUMIENIA)

o Funkcje sktadowe wyjmujace po jednym znaku:
istreamé& get (charé&); —w przypadku konca
strumienia strumien przechodzi w stan btedu
int get (); —w przypadku konca strumienia funkcja
zwraca wartos¢ EOF (o wartosci -1).

o Przyktady uzycia:
char a, b, c¢;
cin.get (a) .get (b) .get (c);

ghar 7}
while (cin.get(z)) {..}

ghar A
while ((z=cin.get()) != EOF) {..}

NIEFORMATOWANE CZYTANIE (WYJIMOWANIE
ZE STRUMIENIA)

o Funkcje sktadowe wyjmujgce wiele znakéw:
1stream& get (char *gdzie, streamsize
ile, char ogr='\n'); —gdyw trakcie czytania
znakow zostanie napotkany ogranicznik, to czytanie
bedzie przerwane (znak ogranicznika pozostanie w
strumieniu)
i1stream& getline (char *gdzie,
streamsize ile, char ogr='\n'); —gdyw
trakcie czytania znakow zostanie napotkany ogranicznik,
to czytanie bedzie przerwane (znak ogranicznika
zostanie usuniety ze strumienia)

o Po zakonczeniu czytania powyzsze funkcje dopiszg na
koncu danych bajt zerowy '\ 0 "' poprawnie konczacy C-
string (wczytanych zostanie wiec maksymalnie 11e-1
znakow).

NIEFORMATOWANE CZYTANIE (WYJIMOWANIE
ZE STRUMIENIA)

o Funkcje zewnetrzna wyjmujaca wiele znakow to:
1streamé& std::getline(isteram &we,

string &wynik, char ogr='\n'); -
funkcja ta nie ma limitu na liczbe wczytywanych
znakow (znak ogranicznika zostanie usuniety ze
strumienia).

o Przyktad uzycia:
string s;
while (getline(cin,s)) {..}

NIEFORMATOWANE CZYTANIE (WYJIMOWANIE
ZE STRUMIENIA)

o Do binarnego czytania danych stuzg funkcje sktadowe:
istream & read(char *gdzile, streamsize 1le) -
funkcja wczytuje blok znakdéw (gdy brakuje danych strumien przechodzi
w stan btedu)
streamsize readsome (char *gdzie, streamsize
ile) —funkcja wczytuje blok znakow (gdy brakuje danych strumien
nie zmienia stanu)
i1stream & 1gnore (streamsize 1le=1, 1int ogr=EOF)
— funkcja pomija blok znakow
streamsize gcount () -funkcja moéwi, ile znakow zostato
wyciggnietych za pomoca ostatniej operacji czytania nieformatowanego
int peek () —funkcja pozwala podgladnac nastepny znak w
strumieniu
istream & putback (char) —funkcja zwraca do strumienia jeden
znak
istream & unget () —funkcja zwraca do strumienia ostatnio
przeczytany znak

NIEFORMATOWANE PISANIE (WSTAWIANIE DO
STRUMIENIA)

o Wstawianie do strumienia realizuje sie za pomocg dwadch funkgji
sktadowych:
ostream & put (char) —funkcjata wstawia do strumienia jeden znak
ostream & write (const char *skad, streambuf ile) —
funkcja ta wstawia do strumienia wiele znakéw

o Przyktady uzycia:

char napis[] = "jakis napis"
for (int 1=0; napls[1; ++1)

cout.put (1?'" ':'=-'").put (napisli]);
ofstream plik = ..;

double e = 2.718281828459;
plik.write (reinterpret cast<char*>(&e), sizeof(e));

BtEDY W STRUMIENIACH

o W klasie 10s mamy zdefiniowane narzedzia do kontrolowania
poprawnosci operacji na strumieniach i sprawdzania stanu strumienia.

o W kazdym strumieniu znajduje sie flaga stanu strumienia (zdefiniowana
w klasie ios base).

o Flaga stanu strumienia sktada sie z trzech bitow:
eofbit —flaga ta jest ustawiana, gdy osiggnieto koniec strumienia
failbit —flaga ta jest ustawiana, gdy nie powiodta sie operacja
we/wy
badbit —flaga ta jest ustawiana, gdy nastgpito powazne uszkodzenie
strumienia

l0_state 4 2 1

BtEDY W STRUMIENIACH

o Funkcje do pracy z flagami btedéw w strumieniach:
bool good () —zwraca true, gdy zadna flaga
btedu nie jest ustawiona
bool eof () —zwraca true, gdy zostat osiggniety
koniec strumienia i jest ustawiona flaga
10s::eo0fbilt
bool fail () —zwraca true, gdy strumien jest
w stanie btedu, czyli jest ustawiona flaga
ios::failbit lubios::badbit
bool bad () —zwraca true, gdy strumien jest
powaznie uszkodzony i jest ustawiona flaga
10s: :badbit

BtEDY W STRUMIENIACH

o W obstudze btedow w strumieniach przydatne sg tez
operatory zdefiniowane w klasie 1os:

operator bool () const —operatorten
Zwraca wartosc niezerowg, gdy ! fail ()
bool operator ! () const —operatorten

zachowuje sie tak jak funkcja fail ()

o Przyktady uzycia:
if (! cin) cout << "biad" << endl;

1f (cin) cout << "ok" << endl;

BtEDY W STRUMIENIACH

o lIstnieje kilka funkcji sktadowych do ustawiania i kasowania flag

btedu:
io state rdstate () —funkcja zwraca flage btedu strumienia
void clear (io state = ios::goodbit) —funkcja

zastepuje flage btedu strumienia inng wartoscig
void setstate (io state) —funkcja dopisuje flage btedu
do flagi strumienia

o Przyktady uzycia:
1f (plik.rdstate() &i1os::failbit)
cout << "failbit jest ustawiona" << endl;
cin.clear (1o0s::eofbit);

cin.setstate(ios::failbit);

BtEDY W STRUMIENIACH

o Strumien mozna zmusi¢ do zgtaszania wyjgtkow w pewnych sytuacjach
za pomocg funkcji exceptions ():
vold exceptions (1o state)

o Argument funkcji exceptions () okresla, flagi dla ktorych ma by¢
zgtoszony wyjatek ios base::failure.

o Gdy chcemy sprawdzi¢ na jakie flagi strumien bedzie reagowat
wyjatkiem, nalezy uzy¢ innej funkcji exceptions ():
1o state exceptions (void) const

o Przyktad uzycia:
plik.exceptions(i1os::failbit | 1os::badbit);

STRUMIENIE ZWIAZANE
Z PLIKAMI

o Typy strumieni plikowych: i fstream, of stream,
fstream.

o Strumienie te sg zadeklarowane w pliku
nagtowkowym <fstream>.

o Strumien plikowy nalezy na poczatku otworzyc
metodg open () a na koncu zamkng¢ metoda
close ().

o Strumien plikowy mozna otworzy¢ w konstruktorze.
Przyktad:
1fstream plik("dane.txt");

STRUMIENIE ZWIAZANE
Z PLIKAMI

o Przy otwieraniu strumienia nalezy podac tryb otwarcia.

o Mozliwe tryby otwarcia strumienia to:
in —do czytania
out —do pisania
ate — ustawienie gtowicy na koncu pliku
app — do dopisywania
trunc — skasowanie starej tresci
binary —tryb binarny (domysinie jest tryb tekstowy)

o Przyktad:
string nazwa = "dane.txt";
ofstream plik(nazwa.c str(), 1los::applios::bin);

"STRUMIENIE ZWIAZANE
Z tANCUCHAMI

o Typy strumieni tannicuchowych: istringstream,
ostringstream, stringstream.

o Strumienie te sg zadeklarowane w pliku nagtowkowym
<sstream>.

o Strumienie fancuchowe przechowujg jako sktadowag
obiekt klasy string.

"STRUMIENIE ZWIAZANE
Z tANCUCHAMI

o Strumien fancuchowy do pisania ostringstream
gromadzi dane w fancuchu znakowym.

o Mozna go zainicjalizowac jakas wartoscig poczgtkowsy i
trybem. Przyktady:
ostringstream wyl;
ostringstream wy2 ("Jjakis tekst",
10s::app);

o Ze strumienia tancuchowego do pisania
ostringstream mozna wyciggngac biezgcg zawartosc
tancucha za pomocg funkcji str () :
string str () const

"STRUMIENIE ZWIAZANE
Z tANCUCHAMI

o Strumien tancuchowy do czytania
istringstream udostepnia dane z fancucha
znakowego.

o Mozna go zainicjalizowac jakas wartoscig
poczatkowa. Przyktady:
istringstream wel;
istringstream we2 ("jakis tekst");

o Strumien tancuchowy do czytania
istringstream mozna reinicjalizowac nowym
tancuchem za pomoca funkcji str () :
volid str (const string &)

SYNCHRONIZACJA STRUMIENI

o Synchroniczng prace strumieni uzyskuje sie dzieki
wigzaniu strumieni za pomocg funkcji sktadowej tie ()
zdefiniowanejw ios base:
ostream* ios_béée::tie (ostream*™)
ostream* 10s base::tie ()

o Mozna wigzac¢ dowolny strumien z jakims jednym
strumieniem wyjsciowym.

o Efektem wigzania jest oproznienie bufora zwigzanego
strumienia wyjsciowego przed operacjg na danym
strumieniu.

o Aby zerwac dotychczasowe powigzanie nalezy na
strumieniu wywota¢ metode tie (nullptr).

o Strumienie standardowe cin i cerr sg powigzane ze
strumieniem cout.

PROBLEMY Z BIBLIOTEKA <CSTDIO>

o Wady funkcjiprintf () i scanf () z biblioteki <cstdio>:
e zmienna liczba argumentdow (kompilator tego nie skontroluje),
» mato czytelna semantyka tych funkcji (przynajmniej na poczatku),

» brak eleganckiego sposobu na wczytywanie i wypisywanie obiektow
typow zdefiniowanych przez uzytkownika,

* analiza wzorca i zawartych w nim znacznikdw (rozpoczynajgcych sie od
znaku procenta) jest wykonywana dopiero w trakcie dziatania
programu.

o Strumienie cin, cout, clogi cerr nie majg zadnych powigzan ze
strumieniami stdin, stdout i stderr (za wyjatkiem tych samych
deskryptorow plikéw).

o Aby strumienie standardowe z biblioteki <iosteam> dobrze
wspotdziataty ze strumieniami standardowymi z biblioteki <cstdio>
nalezy wywotac funkcje sync with stdio():
bool 1os base::sync with stdio(bool sync=true)

BUFORY

o Bufor to magazyn na dane, do ktoérego mozna pisac i z ktorego
mozna czytaC okreslone wartosci sekwencyjnie.

o Bufory sg wykorzystywane przez obiekty strumieniowe do
transferu danych do przedmiotowych magazynow.

o Bufor znakowy streambuf jest zdefiniowany w bibliotece
<streambuf>.

O Funkcjabasic streambuf<>* rdbuf () pozwala na
pobranie adresu obiektu bufora zwigzanego ze strumieniem a
ustanowienie nowego bufora w strumieniu jest mozliwe za
pomocg funkcjibasic streambuf<>* rdbuf
(basic streambuf<>*).

o Wskaznik na bufor w strumieniu nie moze byc pusty.

	Slajd 1: Kurs języka C++
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36

