
KURS JĘZYKA C++
11. STRUMIENIE

SPIS TREŚCI

 Pojęcie strumienia

 Strumienie w bibliotece standardowej

 Operatory strumieniowe >> i <<

 Hierarchia klas strumieni

 Sterowanie formatem

 Manipulatory

 Nieformatowane operacje we/wy

 Błędy w strumieniach

 Strumienie związane z plikami

 Strumienie związane z łańcuchami

 Synchronizacja strumieni

STRUMIENIE

 Strumień to obiekt
kontrolujący przepływ
danych.

 Strumień wejściowy
transportuje dane do
programu.

 Strumień wyjściowy
transportuje dane poza
program.

 Strumienie dzielimy na:

 wejściowe i wyjściowe,

 binarne i tekstowe.

źródło

danych

program

ujście

danych

strumień wejściowy

strumień wyjściowy

OBIEKTY STRUMIENI
W BIBLIOTECE STANDARDOWEJ

 Klasy zdefiniowane w bibliotece <iostream> są
szablonami.

 Klasa istream to strumień wejściowy będący instancją
szablonu klasy basic_istream<char>.

 Klasa ostream to strumień wyjściowy będący instancją
szablonu klasy basic_ostream<char>.

STRUMIENIE
W BIBLIOTECE STANDARDOWEJ

 Biblioteka ze strumieniami we/wy ogólnego przeznaczenia to
<iostream>.

 Biblioteka ze strumieniami we/wy przeznaczona do operacji na plikach
to <fstream>.

 Biblioteka ze strumieniami we/wy przeznaczona do operacji na
obiektach klasy string to <sstream>.

 Strumienie tekstowe zdefiniowane w <iostream> (pracujące na
danych typu char) związane ze standardowym we/wy to:

 cin – standardowe wejście (zwykle klawiatura),

 cout – standardowe wyjście (zwykle ekran),

 clog – standardowe wyjście dla błędów (zwykle ekran),

 cerr – niebuforowane wyjście dla błędów,

 wcin, wcout, wclog, wcerr – strumienie analogiczne do
powyższych, ale pracujące na danych typu wchar_t.

OPERATORY >> I << (WYJMOWANIA ZE I
WSTAWIANIA DO STRUMIENIA)

 Dla strumieni wejściowych pracujących w trybie tekstowym
został zdefiniowany operator >> wyjmowania danych ze
strumienia.

 Dla strumieni wyjściowych pracujących w trybie tekstowym
został zdefiniowany operator << wstawiania danych do
strumienia.

 Operatory >> i << zawsze zwracają referencję do strumieni
na których pracują, dlatego operatory te można łączyć
kaskadowo przy czytaniu lub pisaniu.

 Operatory >> i << automatycznie dokonują konwersji z
danych tekstowych na binarne i na odwrót.

 Należy pamiętać o priorytecie operatora >> i << gdy używa
się wyrażeń. Przykład:
cerr << (a*x+b) << endl;

OPERATOR STRUMIENIOWY <<
DO PISANIA

 int i = 7;

std::cout << i << endl;

// wyjście: 7

 std::string s = ”Abecadło”;

std::cout << s << endl;

// wyjście: Abecadło

 std::bitset<10> flags(7);

std::cout << flags << endl;

// wyjście: 0000000111

 std::complex<float> c(3.1,2.7);

std::cout << c << endl;

// wyjście: (3.1,2.7)

OPERATOR STRUMIENIOWY >>
DO CZYTANIA

 int i = 0;

std::cin >> i;

// wejście: odczytanie wartości int

 std::string s;

std::cin >> s;

// wejście: odczytanie napisu

string

 double d = 0.0;

std::complex<double> c;

std::cin >> d >> c;

// wejście: sekwencyjne odczytanie

// liczby rzeczywistej i zespolonej

OPERATORY STRUMIENIOWE >> I <<
ZDEFINIOWANE PRZEZ UŻYTKOWNIKA

 Dla typów zdefiniowanych przez użytkownika można zdefiniować własne
operatory wstawiania do i wyjmowania ze strumienia:
class Typ {…};

// operator wyjmowania ze strumienia

istream& operator >> (istream &os, Typ &x);

// operator wstawiania do strumienia

ostream& operator << (ostream &os, const Typ &x);

 Należy pamiętać o zwróceniu referencji do strumienia, na którym się
pracuje.

 Operatorów wstawiania do i wyjmowania ze strumienia nie dziedziczy się.

 Operatory wstawiania do i wyjmowania ze strumienia nie mogą być
wirtualne.

HIERARCHIA KLAS STRUMIENIOWYCH
REALIZUJĄCYCH OPERACJE WE/WY

ios_base

basic_ostream<>

ostream

basic_ios<>

ios

basic_istream<>

istream

basic_iostream<>

iostream

istringstream

ifstream

fstream stringstream

ofstream

ostringstream

virtual virtual

basic_streambuf<>

streambuf

STEROWANIE FORMATEM

 Podczas operacji na strumieniu używane są pewne
domniemania dotyczące formatu danych –
domniemania te zapisane są w strumieniu we fladze
stanu formatowania.

 Klasa w której umieszczono flagę stanu formatowania to
ios_base – typ takiej flagi to fmtflags.

STEROWANIE FORMATEM

 Flagi odpowiadające za sposób formatowania:
 ignorowanie białych znaków skipws;
 justowanie left, right, internal (maska adjustfield);
 pełne nazwy boolowskie boolalpha;
 reprezentacja liczb całkowitych dec, oct, hex (maska
basefield);

 uwidocznienie podstawy reprezentacji showbase;
 kropka dziesiętna showpoint;
 duże litery w liczbach uppercase;
 znak + w liczbach dodatnich showpos;
 reprezentacja liczb rzeczywistych scientific, fixed (maska
floatfield);

 buforowanie unibuf.

STEROWANIE FORMATEM

 Zmianę reguł formatowania dokonuje się następującymi metodami:
fmtflags flags () const;
fmtflags flags (fmtflags fls);
fmtflags setf (fmtflags fl);
fmtflags setf (fmtflags fl, fmtflags mask);
fmtflags unsetf (fmtflags fl);
streamsize width () const;
streamsize width (streamsize w);
streamsize precision () const;
streamsize precision (streamsize p);

 Uwaga – metoda width(w) ma działanie jednorazowe.

 Przykłady:
fmtflags f = cout.flags();
cout.unsetf(ios::boolalpha);
cout.setf(ios::showpos|ios::showpoint);
cout.setf(ios::hex,ios::basefield);
…
cout.flags(f);

MANIPULATORY

 Manipulatory, zdefiniowane w pliku zagłówkowym <iomanip> to
specjalne obiekty, które można umieścić w strumieniu za pomocą
operatorów >> albo <<, które powodują zmianę reguł formatowania
lub inne efekty uboczne na strumieniu.

 Standardowe manipulatory bezargumentowe:
endl, ends,
hex, dec, oct,
fixed, scientific,
left, right, internal,
skipws, noskipws, ws,
boolalpha, noboolalpha,
showpoint, noshowpoint,
showpos, nowhowpos,
showbase, noshowbase,
uppercase, nouppercase,
unitbuf, nounitbuf,
flush.

MANIPULATORY

 Standardowe manipulatory sparametryzowane:
setw(int),
setprecision(int),
setfill(char), setfill(wchar_t),
setiosflags(fmtflags),
resetiosflags(fmtflags).

 Przykłady:
cout << setiosflags(ios_base::boolalpha);

MANIPULATORY

 Własne manipulatory bezparametrowe definiuje się w postaci
funkcji.

 Przykład:
inline ostream& tab (ostream &os)

{

return os << ”\t”;

}

…

cout << ”x:” << tab << tab << x << endl;

MANIPULATORY

 Własne manipulatory sparametryzowane definiuje się w postaci klas:
 klasa ta musi posiadać konstruktor tworzący chwilowy obiekt

manipulatora,
 oraz zaprzyjaźniony operator strumieniowy >> albo << używający

obiektu naszej klasy.

 Przykład:
struct liczba {

int wart, podst;
friend ostream& operator <<
(ostream &os, const liczba &licz)

{ /* … */ }
public:

liczba (int wart, int podst)
: wart(w), podst(p)

{ /* … */ }
};
…
cout << ”y = ” << liczba(y, 7) << endl;

NIEFORMATOWANE
OPERACJE WE/WY

 Formatowane operacje we/wy przeprowadzane są
za pośrednictwem operatorów >> i <<, które
przekształcają dane z postaci tekstowej na binarną
(czytanie) albo z postaci binarnej na tekstową
(pisanie).

 Są jednak sytuacje, gdy formatowanie nie jest nam
potrzebne…

 Nieformatowane operacje we/wy są umieszczone w
klasach istream i ostream (oraz uzupełnione
kilkoma funkcjami składowymi w klasie
iostream).

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Funkcje składowe wyjmujące po jednym znaku:
istream& get(char&); – w przypadku końca
strumienia strumień przechodzi w stan błędu
int get(); – w przypadku końca strumienia funkcja
zwraca wartość EOF (o wartości -1).

 Przykłady użycia:
char a, b, c;
cin.get(a).get(b).get(c);
…
char z;
while (cin.get(z)) {…}
…
char z;
while ((z=cin.get()) != EOF) {…}

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Funkcje składowe wyjmujące wiele znaków:
istream& get(char *gdzie, streamsize
ile, char ogr='\n'); – gdy w trakcie czytania
znaków zostanie napotkany ogranicznik, to czytanie
będzie przerwane (znak ogranicznika pozostanie w
strumieniu)
istream& getline(char *gdzie,
streamsize ile, char ogr='\n'); – gdy w
trakcie czytania znaków zostanie napotkany ogranicznik,
to czytanie będzie przerwane (znak ogranicznika
zostanie usunięty ze strumienia)

 Po zakończeniu czytania powyższe funkcje dopiszą na
końcu danych bajt zerowy '\0' poprawnie kończący C-
string (wczytanych zostanie więc maksymalnie ile-1
znaków).

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Funkcje zewnętrzna wyjmująca wiele znaków to:
istream& std::getline(isteram &we,

string &wynik, char ogr='\n'); –
funkcja ta nie ma limitu na liczbę wczytywanych
znaków (znak ogranicznika zostanie usunięty ze
strumienia).

 Przykład użycia:
string s;

while (getline(cin,s)) {…}

NIEFORMATOWANE CZYTANIE (WYJMOWANIE
ZE STRUMIENIA)

 Do binarnego czytania danych służą funkcje składowe:
istream & read(char *gdzie, streamsize ile) –
funkcja wczytuje blok znaków (gdy brakuje danych strumień przechodzi
w stan błędu)
streamsize readsome (char *gdzie, streamsize
ile) – funkcja wczytuje blok znaków (gdy brakuje danych strumień
nie zmienia stanu)
istream & ignore(streamsize ile=1, int ogr=EOF)
– funkcja pomija blok znaków
streamsize gcount() – funkcja mówi, ile znaków zostało
wyciągniętych za pomocą ostatniej operacji czytania nieformatowanego
int peek () – funkcja pozwala podglądnąć następny znak w
strumieniu
istream & putback(char) – funkcja zwraca do strumienia jeden
znak
istream & unget() – funkcja zwraca do strumienia ostatnio
przeczytany znak

NIEFORMATOWANE PISANIE (WSTAWIANIE DO
STRUMIENIA)

 Wstawianie do strumienia realizuje się za pomocą dwóch funkcji
składowych:
ostream & put(char) – funkcja ta wstawia do strumienia jeden znak
ostream & write(const char *skąd, streambuf ile) –
funkcja ta wstawia do strumienia wiele znaków

 Przykłady użycia:
char napis[] = "jakiś napis";

for (int i=0; napis[i]; ++i)

cout.put(i?' ':'-').put(napis[i]);

…

ofstream plik = …;

double e = 2.718281828459;

plik.write(reinterpret_cast<char*>(&e), sizeof(e));

BŁĘDY W STRUMIENIACH

 W klasie ios mamy zdefiniowane narzędzia do kontrolowania
poprawności operacji na strumieniach i sprawdzania stanu strumienia.

 W każdym strumieniu znajduje się flaga stanu strumienia (zdefiniowana
w klasie ios_base).

 Flaga stanu strumienia składa się z trzech bitów:
eofbit – flaga ta jest ustawiana, gdy osiągnięto koniec strumienia
failbit – flaga ta jest ustawiana, gdy nie powiodła się operacja
we/wy
badbit – flaga ta jest ustawiana, gdy nastąpiło poważne uszkodzenie
strumienia

failbit eofbit…

4 2 1io_state

badbit

BŁĘDY W STRUMIENIACH

 Funkcje do pracy z flagami błędów w strumieniach:
bool good() – zwraca true, gdy żadna flaga
błędu nie jest ustawiona
bool eof() – zwraca true, gdy został osiągnięty
koniec strumienia i jest ustawiona flaga
ios::eofbit

bool fail() – zwraca true, gdy strumień jest
w stanie błędu, czyli jest ustawiona flaga
ios::failbit lub ios::badbit
bool bad() – zwraca true, gdy strumień jest
poważnie uszkodzony i jest ustawiona flaga
ios::badbit

BŁĘDY W STRUMIENIACH

 W obsłudze błędów w strumieniach przydatne są też
operatory zdefiniowane w klasie ios:
operator bool() const – operator ten
zwraca wartość niezerową, gdy !fail()
bool operator ! () const – operator ten
zachowuje się tak jak funkcja fail()

 Przykłady użycia:
if (! cin) cout << "błąd" << endl;

…

if (cin) cout << "ok" << endl;

BŁĘDY W STRUMIENIACH

 Istnieje kilka funkcji składowych do ustawiania i kasowania flag
błędu:
io_state rdstate() – funkcja zwraca flagę błędu strumienia
void clear (io_state = ios::goodbit) – funkcja
zastępuje flagę błędu strumienia inną wartością
void setstate (io_state) – funkcja dopisuje flagę błędu
do flagi strumienia

 Przykłady użycia:
if (plik.rdstate()&ios::failbit)

cout << "failbit jest ustawiona" << endl;
…
cin.clear(ios::eofbit);
…
cin.setstate(ios::failbit);

BŁĘDY W STRUMIENIACH

 Strumień można zmusić do zgłaszania wyjątków w pewnych sytuacjach
za pomocą funkcji exceptions():
void exceptions (io_state)

 Argument funkcji exceptions() określa, flagi dla których ma być
zgłoszony wyjątek ios_base::failure.

 Gdy chcemy sprawdzić na jakie flagi strumień będzie reagował
wyjątkiem, należy użyć innej funkcji exceptions():
io_state exceptions (void) const

 Przykład użycia:
plik.exceptions(ios::failbit | ios::badbit);

STRUMIENIE ZWIĄZANE
Z PLIKAMI

 Typy strumieni plikowych: ifstream, ofstream,
fstream.

 Strumienie te są zadeklarowane w pliku
nagłówkowym <fstream>.

 Strumień plikowy należy na początku otworzyć
metodą open() a na końcu zamknąć metodą
close().

 Strumień plikowy można otworzyć w konstruktorze.
Przykład:
ifstream plik("dane.txt");

STRUMIENIE ZWIĄZANE
Z PLIKAMI

 Przy otwieraniu strumienia należy podać tryb otwarcia.

 Możliwe tryby otwarcia strumienia to:
in – do czytania
out – do pisania
ate – ustawienie głowicy na końcu pliku
app – do dopisywania
trunc – skasowanie starej treści
binary – tryb binarny (domyślnie jest tryb tekstowy)

 Przykład:
string nazwa = "dane.txt";

ofstream plik(nazwa.c_str(), ios::app|ios::bin);

STRUMIENIE ZWIĄZANE
Z ŁAŃCUCHAMI

 Typy strumieni łańcuchowych: istringstream,
ostringstream, stringstream.

 Strumienie te są zadeklarowane w pliku nagłówkowym
<sstream>.

 Strumienie łańcuchowe przechowują jako składową
obiekt klasy string.

STRUMIENIE ZWIĄZANE
Z ŁAŃCUCHAMI

 Strumień łańcuchowy do pisania ostringstream
gromadzi dane w łańcuchu znakowym.

 Można go zainicjalizować jakąś wartością początkową i
trybem. Przykłady:
ostringstream wy1;

ostringstream wy2("jakiś tekst",

ios::app);

 Ze strumienia łańcuchowego do pisania
ostringstream można wyciągnąć bieżącą zawartość
łańcucha za pomocą funkcji str():
string str() const

STRUMIENIE ZWIĄZANE
Z ŁAŃCUCHAMI

 Strumień łańcuchowy do czytania
istringstream udostępnia dane z łańcucha
znakowego.

 Można go zainicjalizować jakąś wartością
początkową. Przykłady:
istringstream we1;

istringstream we2("jakiś tekst");

 Strumień łańcuchowy do czytania
istringstream można reinicjalizować nowym
łańcuchem za pomocą funkcji str():
void str (const string &)

SYNCHRONIZACJA STRUMIENI

 Synchroniczną pracę strumieni uzyskuje się dzięki
wiązaniu strumieni za pomocą funkcji składowej tie()
zdefiniowanej w ios_base:
ostream* ios_base::tie (ostream*)
ostream* ios_base::tie ()

 Można wiązać dowolny strumień z jakimś jednym
strumieniem wyjściowym.

 Efektem wiązania jest opróżnienie bufora związanego
strumienia wyjściowego przed operacją na danym
strumieniu.

 Aby zerwać dotychczasowe powiązanie należy na
strumieniu wywołać metodę tie(nullptr).

 Strumienie standardowe cin i cerr są powiązane ze
strumieniem cout.

PROBLEMY Z BIBLIOTEKĄ <CSTDIO>

 Wady funkcji printf() i scanf() z biblioteki <cstdio>:

 zmienna liczba argumentów (kompilator tego nie skontroluje),

 mało czytelna semantyka tych funkcji (przynajmniej na początku),

 brak eleganckiego sposobu na wczytywanie i wypisywanie obiektów
typów zdefiniowanych przez użytkownika,

 analiza wzorca i zawartych w nim znaczników (rozpoczynających się od
znaku procenta) jest wykonywana dopiero w trakcie działania
programu.

 Strumienie cin, cout, clog i cerr nie mają żadnych powiązań ze
strumieniami stdin, stdout i stderr (za wyjątkiem tych samych
deskryptorów plików).

 Aby strumienie standardowe z biblioteki <iosteam> dobrze
współdziałały ze strumieniami standardowymi z biblioteki <cstdio>
należy wywołać funkcję sync_with_stdio():
bool ios_base::sync_with_stdio(bool sync=true)

BUFORY

 Bufor to magazyn na dane, do którego można pisać i z którego
można czytać określone wartości sekwencyjnie.

 Bufory są wykorzystywane przez obiekty strumieniowe do
transferu danych do przedmiotowych magazynów.

 Bufor znakowy streambuf jest zdefiniowany w bibliotece
<streambuf>.

 Funkcja basic_streambuf<>* rdbuf () pozwala na
pobranie adresu obiektu bufora związanego ze strumieniem a
ustanowienie nowego bufora w strumieniu jest możliwe za
pomocą funkcji basic_streambuf<>* rdbuf
(basic_streambuf<>*).

 Wskaźnik na bufor w strumieniu nie może być pusty.

	Slajd 1: Kurs języka C++
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36

