
KURS JĘZYKA C++ 
11. STRUMIENIE
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STRUMIENIE

 Strumień to obiekt 
kontrolujący przepływ 
danych.

 Strumień wejściowy 
transportuje dane do 
programu.

 Strumień wyjściowy 
transportuje dane poza 
program.

 Strumienie dzielimy na: 

 wejściowe i wyjściowe,

 binarne i tekstowe.
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strumień wejściowy

strumień wyjściowy



OBIEKTY STRUMIENI 
W BIBLIOTECE STANDARDOWEJ

 Klasy zdefiniowane w bibliotece <iostream> są 
szablonami.

 Klasa istream to strumień wejściowy będący instancją  
szablonu klasy basic_istream<char>.

 Klasa ostream to strumień wyjściowy będący instancją  
szablonu klasy basic_ostream<char>.



STRUMIENIE 
W BIBLIOTECE STANDARDOWEJ

 Biblioteka ze strumieniami we/wy ogólnego przeznaczenia to 
<iostream>.

 Biblioteka ze strumieniami we/wy przeznaczona do operacji na plikach 
to <fstream>.

 Biblioteka ze strumieniami we/wy przeznaczona do operacji na 
obiektach klasy string to <sstream>.

 Strumienie tekstowe zdefiniowane w <iostream> (pracujące na 
danych typu char) związane ze standardowym we/wy to:

 cin – standardowe wejście (zwykle klawiatura),

 cout – standardowe wyjście (zwykle ekran),

 clog – standardowe wyjście dla błędów (zwykle ekran),

 cerr – niebuforowane wyjście dla błędów,

 wcin, wcout, wclog, wcerr – strumienie analogiczne do 
powyższych, ale pracujące na danych typu wchar_t.



OPERATORY >> I << (WYJMOWANIA ZE I 
WSTAWIANIA DO STRUMIENIA)

 Dla strumieni wejściowych pracujących w trybie tekstowym 
został zdefiniowany operator >> wyjmowania danych ze 
strumienia.

 Dla strumieni wyjściowych pracujących w trybie tekstowym 
został zdefiniowany operator << wstawiania danych do 
strumienia.

 Operatory >> i << zawsze zwracają referencję do strumieni 
na których pracują, dlatego operatory te można łączyć 
kaskadowo przy czytaniu lub pisaniu.

 Operatory >> i << automatycznie dokonują konwersji z 
danych tekstowych na binarne i na odwrót.

 Należy pamiętać o priorytecie operatora >> i << gdy używa 
się wyrażeń. Przykład:
cerr << (a*x+b) << endl;



OPERATOR STRUMIENIOWY <<
DO PISANIA 

 int i = 7;

std::cout << i << endl;

// wyjście: 7

 std::string s = ”Abecadło”;

std::cout << s << endl;

// wyjście: Abecadło

 std::bitset<10> flags(7);

std::cout << flags << endl;

// wyjście: 0000000111

 std::complex<float> c(3.1,2.7);

std::cout << c << endl;

// wyjście: (3.1,2.7)



OPERATOR STRUMIENIOWY >>
DO CZYTANIA 

 int i = 0;

std::cin >> i;

// wejście: odczytanie wartości int

 std::string s;

std::cin >> s;

// wejście: odczytanie napisu 

string

 double d = 0.0;

std::complex<double> c;

std::cin >> d >> c;

// wejście: sekwencyjne odczytanie

// liczby rzeczywistej i zespolonej



OPERATORY STRUMIENIOWE >> I <<
ZDEFINIOWANE PRZEZ UŻYTKOWNIKA

 Dla typów zdefiniowanych przez użytkownika można zdefiniować własne 
operatory wstawiania do i wyjmowania ze strumienia:
class Typ {…};

// operator wyjmowania ze strumienia

istream& operator >> (istream &os, Typ &x);

// operator wstawiania do strumienia

ostream& operator << (ostream &os, const Typ &x);

 Należy pamiętać o zwróceniu referencji do strumienia, na którym się 
pracuje.

 Operatorów wstawiania do i wyjmowania ze strumienia nie dziedziczy się.

 Operatory wstawiania do i wyjmowania ze strumienia nie mogą być 
wirtualne.



HIERARCHIA KLAS STRUMIENIOWYCH 
REALIZUJĄCYCH OPERACJE WE/WY
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basic_ostream<>

ostream

basic_ios<>

ios

basic_istream<>

istream

basic_iostream<>

iostream

istringstream

ifstream

fstream stringstream

ofstream

ostringstream

virtual virtual

basic_streambuf<>

streambuf



STEROWANIE FORMATEM

 Podczas operacji na strumieniu używane są pewne 
domniemania dotyczące formatu danych –
domniemania te zapisane są w strumieniu we fladze 
stanu formatowania.

 Klasa w której umieszczono flagę stanu formatowania to 
ios_base – typ takiej flagi to fmtflags.



STEROWANIE FORMATEM

 Flagi odpowiadające za sposób formatowania:
 ignorowanie białych znaków skipws;
 justowanie left, right, internal (maska adjustfield);
 pełne nazwy boolowskie boolalpha;
 reprezentacja liczb całkowitych dec, oct, hex (maska 
basefield);

 uwidocznienie podstawy reprezentacji showbase;
 kropka dziesiętna showpoint;
 duże litery w liczbach uppercase;
 znak + w liczbach dodatnich showpos;
 reprezentacja liczb rzeczywistych scientific, fixed (maska 
floatfield);

 buforowanie unibuf.



STEROWANIE FORMATEM

 Zmianę reguł formatowania dokonuje się następującymi metodami:
fmtflags flags () const;
fmtflags flags (fmtflags fls);
fmtflags setf (fmtflags fl);
fmtflags setf (fmtflags fl, fmtflags mask);
fmtflags unsetf (fmtflags fl);
streamsize width () const;
streamsize width (streamsize w);
streamsize precision () const;
streamsize precision (streamsize p);

 Uwaga – metoda width(w) ma działanie jednorazowe.

 Przykłady:
fmtflags f = cout.flags();
cout.unsetf(ios::boolalpha);
cout.setf(ios::showpos|ios::showpoint);
cout.setf(ios::hex,ios::basefield);
…
cout.flags(f);



MANIPULATORY

 Manipulatory, zdefiniowane w pliku zagłówkowym <iomanip> to 
specjalne obiekty, które można umieścić w strumieniu za pomocą 
operatorów >> albo <<, które powodują zmianę reguł formatowania 
lub inne efekty uboczne na strumieniu. 

 Standardowe manipulatory bezargumentowe:
endl, ends,
hex, dec, oct,
fixed, scientific,
left, right, internal,
skipws, noskipws, ws,
boolalpha, noboolalpha,
showpoint, noshowpoint,
showpos, nowhowpos,
showbase, noshowbase,
uppercase, nouppercase,
unitbuf, nounitbuf,
flush.



MANIPULATORY

 Standardowe manipulatory sparametryzowane:
setw(int),
setprecision(int),
setfill(char), setfill(wchar_t),
setiosflags(fmtflags),
resetiosflags(fmtflags).

 Przykłady:
cout << setiosflags(ios_base::boolalpha);



MANIPULATORY

 Własne manipulatory bezparametrowe definiuje się w postaci 
funkcji.

 Przykład:
inline ostream& tab (ostream &os)

{

return os << ”\t”;

}

…

cout << ”x:” << tab << tab << x << endl;



MANIPULATORY

 Własne manipulatory sparametryzowane definiuje się w postaci klas:
 klasa ta musi posiadać konstruktor tworzący chwilowy obiekt 

manipulatora,
 oraz zaprzyjaźniony operator strumieniowy >> albo << używający 

obiektu naszej klasy.

 Przykład:
struct liczba {

int wart, podst;
friend ostream& operator <<
(ostream &os, const liczba &licz)

{ /* … */ }
public:

liczba (int wart, int podst)
: wart(w), podst(p)

{ /* … */ }
};
…
cout << ”y = ” << liczba(y, 7) << endl;



NIEFORMATOWANE 
OPERACJE WE/WY

 Formatowane operacje we/wy przeprowadzane są 
za pośrednictwem operatorów >> i <<, które 
przekształcają dane z postaci tekstowej na binarną 
(czytanie) albo z postaci binarnej na tekstową 
(pisanie).

 Są jednak sytuacje, gdy formatowanie nie jest nam 
potrzebne…

 Nieformatowane operacje we/wy są umieszczone w 
klasach istream i ostream (oraz uzupełnione 
kilkoma funkcjami składowymi w klasie 
iostream).



NIEFORMATOWANE CZYTANIE (WYJMOWANIE 
ZE STRUMIENIA)

 Funkcje składowe wyjmujące po jednym znaku:
istream& get(char&); – w przypadku końca 
strumienia strumień przechodzi w stan błędu
int get(); – w przypadku końca strumienia funkcja 
zwraca wartość EOF (o wartości -1).

 Przykłady użycia:
char a, b, c;
cin.get(a).get(b).get(c);
…
char z;
while (cin.get(z)) {…}
…
char z;
while ((z=cin.get()) != EOF) {…}



NIEFORMATOWANE CZYTANIE (WYJMOWANIE 
ZE STRUMIENIA)

 Funkcje składowe wyjmujące wiele znaków:
istream& get(char *gdzie, streamsize
ile, char ogr='\n'); – gdy w trakcie czytania 
znaków zostanie napotkany ogranicznik, to czytanie 
będzie przerwane (znak ogranicznika pozostanie w 
strumieniu)
istream& getline(char *gdzie, 
streamsize ile, char ogr='\n'); – gdy w 
trakcie czytania znaków zostanie napotkany ogranicznik, 
to czytanie będzie przerwane (znak ogranicznika 
zostanie usunięty ze strumienia)

 Po zakończeniu czytania powyższe funkcje dopiszą na 
końcu danych bajt zerowy '\0' poprawnie kończący C-
string (wczytanych zostanie więc maksymalnie ile-1
znaków).   



NIEFORMATOWANE CZYTANIE (WYJMOWANIE 
ZE STRUMIENIA)

 Funkcje zewnętrzna wyjmująca wiele znaków to:
istream& std::getline(isteram &we, 

string &wynik, char ogr='\n'); –
funkcja ta nie ma limitu na liczbę wczytywanych 
znaków (znak ogranicznika zostanie usunięty ze 
strumienia).

 Przykład użycia:
string s;

while (getline(cin,s)) {…}



NIEFORMATOWANE CZYTANIE (WYJMOWANIE 
ZE STRUMIENIA)

 Do binarnego czytania danych służą funkcje składowe:
istream & read(char *gdzie, streamsize ile) –
funkcja wczytuje blok znaków (gdy brakuje danych strumień przechodzi 
w stan błędu)
streamsize readsome (char *gdzie, streamsize
ile) – funkcja wczytuje blok znaków (gdy brakuje danych strumień 
nie zmienia stanu)
istream & ignore(streamsize ile=1, int ogr=EOF) 
– funkcja pomija blok znaków
streamsize gcount() – funkcja mówi, ile znaków zostało 
wyciągniętych za pomocą ostatniej operacji czytania nieformatowanego
int peek () – funkcja pozwala podglądnąć następny znak w 
strumieniu
istream & putback(char) – funkcja zwraca do strumienia jeden 
znak
istream & unget() – funkcja zwraca do strumienia ostatnio 
przeczytany znak



NIEFORMATOWANE PISANIE (WSTAWIANIE DO 
STRUMIENIA)

 Wstawianie do strumienia realizuje się za pomocą dwóch funkcji 
składowych:
ostream & put(char) – funkcja ta wstawia do strumienia jeden znak
ostream & write(const char *skąd, streambuf ile) –
funkcja ta wstawia do strumienia wiele znaków

 Przykłady użycia:
char napis[] = "jakiś napis";

for (int i=0; napis[i]; ++i)

cout.put(i?' ':'-').put(napis[i]);

…

ofstream plik = …;

double e = 2.718281828459;

plik.write(reinterpret_cast<char*>(&e), sizeof(e));



BŁĘDY W STRUMIENIACH

 W klasie ios mamy zdefiniowane narzędzia do kontrolowania 
poprawności operacji na strumieniach i sprawdzania stanu strumienia.

 W każdym strumieniu znajduje się flaga stanu strumienia (zdefiniowana 
w klasie ios_base).

 Flaga stanu strumienia składa się z trzech bitów:
eofbit – flaga ta jest ustawiana, gdy osiągnięto koniec strumienia
failbit – flaga ta jest ustawiana, gdy nie powiodła się operacja 
we/wy
badbit – flaga ta jest ustawiana, gdy nastąpiło poważne uszkodzenie 
strumienia

failbit eofbit…

4 2 1io_state

badbit



BŁĘDY W STRUMIENIACH

 Funkcje do pracy z flagami błędów w strumieniach:
bool good() – zwraca true, gdy żadna flaga 
błędu nie jest ustawiona
bool eof() – zwraca true, gdy został osiągnięty 
koniec strumienia i jest ustawiona flaga 
ios::eofbit

bool fail() – zwraca true, gdy strumień jest 
w stanie błędu, czyli jest ustawiona flaga 
ios::failbit lub ios::badbit
bool bad() – zwraca true, gdy strumień jest 
poważnie uszkodzony i jest ustawiona flaga 
ios::badbit



BŁĘDY W STRUMIENIACH

 W obsłudze błędów w strumieniach przydatne są też 
operatory zdefiniowane w klasie ios:
operator bool() const – operator ten 
zwraca wartość niezerową, gdy !fail()
bool operator ! () const – operator ten 
zachowuje się tak jak funkcja fail()

 Przykłady użycia:
if (! cin) cout << "błąd" << endl;

…

if (cin) cout << "ok" << endl;



BŁĘDY W STRUMIENIACH

 Istnieje kilka funkcji składowych do ustawiania i kasowania flag 
błędu:
io_state rdstate() – funkcja zwraca flagę błędu strumienia
void clear (io_state = ios::goodbit) – funkcja 
zastępuje flagę błędu strumienia inną wartością
void setstate (io_state) – funkcja dopisuje flagę błędu 
do flagi strumienia

 Przykłady użycia:
if (plik.rdstate()&ios::failbit)

cout << "failbit jest ustawiona" << endl;
…
cin.clear(ios::eofbit);
…
cin.setstate(ios::failbit);



BŁĘDY W STRUMIENIACH

 Strumień można zmusić do zgłaszania wyjątków w pewnych sytuacjach 
za pomocą funkcji exceptions():
void exceptions (io_state)

 Argument funkcji exceptions() określa, flagi dla których ma być 
zgłoszony wyjątek ios_base::failure.

 Gdy chcemy sprawdzić na jakie flagi strumień będzie reagował 
wyjątkiem, należy użyć innej funkcji exceptions():
io_state exceptions (void) const

 Przykład użycia:
plik.exceptions(ios::failbit | ios::badbit);



STRUMIENIE ZWIĄZANE 
Z PLIKAMI

 Typy strumieni plikowych: ifstream, ofstream, 
fstream. 

 Strumienie te są zadeklarowane w pliku 
nagłówkowym <fstream>.

 Strumień plikowy należy na początku otworzyć 
metodą open() a na końcu zamknąć metodą 
close().

 Strumień plikowy można otworzyć w konstruktorze. 
Przykład:
ifstream plik("dane.txt");



STRUMIENIE ZWIĄZANE 
Z PLIKAMI

 Przy otwieraniu strumienia należy podać tryb otwarcia.

 Możliwe tryby otwarcia strumienia to:
in – do czytania
out – do pisania
ate – ustawienie głowicy na końcu pliku
app – do dopisywania
trunc – skasowanie starej treści
binary – tryb binarny (domyślnie jest tryb tekstowy)

 Przykład:
string nazwa = "dane.txt";

ofstream plik(nazwa.c_str(), ios::app|ios::bin);



STRUMIENIE ZWIĄZANE 
Z ŁAŃCUCHAMI

 Typy strumieni łańcuchowych: istringstream, 
ostringstream, stringstream.

 Strumienie te są zadeklarowane w pliku nagłówkowym 
<sstream>.

 Strumienie łańcuchowe przechowują jako składową 
obiekt klasy string.



STRUMIENIE ZWIĄZANE 
Z ŁAŃCUCHAMI

 Strumień łańcuchowy do pisania ostringstream
gromadzi dane w łańcuchu znakowym.

 Można go zainicjalizować jakąś wartością początkową i 
trybem. Przykłady:
ostringstream wy1;

ostringstream wy2("jakiś tekst", 

ios::app);

 Ze strumienia łańcuchowego do pisania 
ostringstream można wyciągnąć bieżącą zawartość 
łańcucha za pomocą funkcji str():
string str() const



STRUMIENIE ZWIĄZANE 
Z ŁAŃCUCHAMI

 Strumień łańcuchowy do czytania 
istringstream udostępnia dane z łańcucha 
znakowego.

 Można go zainicjalizować jakąś wartością 
początkową. Przykłady:
istringstream we1;

istringstream we2("jakiś tekst");

 Strumień łańcuchowy do czytania 
istringstream można reinicjalizować nowym 
łańcuchem za pomocą funkcji str():
void str (const string &)



SYNCHRONIZACJA STRUMIENI

 Synchroniczną pracę strumieni uzyskuje się dzięki 
wiązaniu strumieni za pomocą funkcji składowej tie()
zdefiniowanej w ios_base:
ostream* ios_base::tie (ostream*)
ostream* ios_base::tie ()

 Można wiązać dowolny strumień z jakimś jednym 
strumieniem wyjściowym.

 Efektem wiązania jest opróżnienie bufora związanego 
strumienia wyjściowego przed operacją na danym 
strumieniu.

 Aby zerwać dotychczasowe powiązanie należy na 
strumieniu wywołać metodę tie(nullptr).

 Strumienie standardowe cin i cerr są powiązane ze 
strumieniem cout.



PROBLEMY Z BIBLIOTEKĄ <CSTDIO>

 Wady funkcji printf() i scanf() z biblioteki <cstdio>:

 zmienna liczba argumentów (kompilator tego nie skontroluje),

 mało czytelna semantyka tych funkcji (przynajmniej na początku),

 brak eleganckiego sposobu na wczytywanie i wypisywanie obiektów 
typów zdefiniowanych przez użytkownika,

 analiza wzorca i zawartych w nim znaczników (rozpoczynających się od 
znaku procenta) jest wykonywana dopiero w trakcie działania 
programu.

 Strumienie cin, cout, clog i cerr nie mają żadnych powiązań ze 
strumieniami stdin, stdout i stderr (za wyjątkiem tych samych 
deskryptorów plików).

 Aby strumienie standardowe z biblioteki <iosteam> dobrze 
współdziałały ze strumieniami standardowymi z biblioteki <cstdio>
należy wywołać funkcję sync_with_stdio(): 
bool ios_base::sync_with_stdio(bool sync=true)



BUFORY

 Bufor to magazyn na dane, do którego można pisać i z którego 
można czytać  określone wartości sekwencyjnie.

 Bufory są wykorzystywane przez obiekty strumieniowe do 
transferu danych do przedmiotowych magazynów.

 Bufor znakowy streambuf jest zdefiniowany w bibliotece 
<streambuf>.

 Funkcja basic_streambuf<>* rdbuf () pozwala na 
pobranie adresu obiektu bufora związanego ze strumieniem a 
ustanowienie nowego bufora w strumieniu jest możliwe za 
pomocą funkcji basic_streambuf<>* rdbuf
(basic_streambuf<>*).

 Wskaźnik na bufor w strumieniu nie może być pusty.
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